Rules governing rockets and space launch

Have you ever wondered what the rules are when it comes to rocket launches? A rocket is basically a bomb with a hole poked in one end, and they sometimes fail catastrophically. Are there any laws governing this activity, or is it a total free for all? Aside from exploding on the pad, what if your rocket (or parts of it) land on someone else’s private property or injured someone? Do you need some sort of clearance from the government to launch a rocket?

Volumes of books could be written with answers to these questions, but I will just highlight a couple of important federal laws and regulations that govern large commercial rockets and space launch activity in the United States. My background is in law, so it’s only natural for me to pay extra attention to the laws and regulations for space flight.

rocket launching into the sky, with large smoke cloud below
rocket lab launch. image credit: new york times

International Traffic in Arms Regulations

One fundamental set of requirements is the International Traffic in Arms Regulations (“ITAR”). These regulations restrict the export of defense or military related technologies, as a part of US national security. Here’s a quick rundown:

What type of technologies are covered under ITAR? Defense-related articles and services, which are on the United States Munitions List (“USML”). This is basically a list of services or technologies that have been designated as defense or space related by the US government.

What’s a defense-related “article”? An article is basically either a physical item or technical data.

What does it mean if a technology is on the USML and subject to ITAR? In order to export one of these technologies (i.e., to give it to a non-US person), you would have to get an export license from the US State Department. In other words, in general, these technologies can only be shared with another US person, unless you get special approval from the State Department.

What are the categories in the United States Munitions List?

  1. Firearms, Close Assault Weapons and Combat Shotguns
  2. Guns and Armament
  3. Ammunition/Ordnance
  4. Launch Vehicles, Guided Missiles, Ballistic Missiles, Rockets, Torpedoes, Bombs, and Mines
  5. Explosives and Energetic Materials, Propellants, Incendiary Agents, and Their Constituents
  6. Surface Vessels of War and Special Naval Equipment
  7. Ground Vehicles
  8. Aircraft and Related Articles
  9. Military Training Equipment and Training
  10. Personal Protective Equipment
  11. Military Electronics
  12. Fire Control, Range Finder, Optical and Guidance and Control Equipment, Night vision goggles
  13. Materials and Miscellaneous Articles
  14. Toxicological Agents, Including Chemical Agents, Biological Agents, and Associated Equipment
  15. Spacecraft and Related Articles
  16. Nuclear Weapons Related Articles
  17. Classified Articles, Technical Data, and Defense Services Not Otherwise Enumerated
  18. Directed Energy Weapons
  19. Gas Turbine Engines and Associated Equipment
  20. Submersible Vessels and Related Articles
  21. Articles, Technical Data, and Defense Services Not Otherwise Enumerated

Who legally enforces ITAR? The US Department of State Directorate of Defense Trade Controls (“DDTC”) interprets and enforces ITAR.

Who physically enforces ITAR? The US Department of Homeland Security enforces ITAR. Specifically, Special Agents under the Immigration and Customs Enforcement (“ICE”), along with US Customs and Border Protection Officers physically inspect imports and exports at US border crossings and international airports.

Registration. All manufacturers (as well as exporters and brokers) of defense articles are required to register with the State Department.

Satellites and their components. Prior to 1992, satellites components were considered munitions, subject to ITAR and enforcement by the State Department. However, during the mid-1990s, the US Commerce Department took on responsibility for regulating communications satellites, under the Export Administration Regulations (“EAR”).

Arms Export Control Act

Another major related law is the Arms Export Control Act (“AECA”). This law gives the US President the authority to control imports and exports of defense articles. It requires foreign governments receiving any weapons from the US to use them only in self-defense. The law also places certain restrictions on US arms traders and manufacturers. If they sell sensitive technologies to “trusted” parties, thorough documentation is required, and they are completely prohibited from selling those technologies to certain other parties.

Export Administration Regulations

One other significant set of requirements governing rocket launches and space activity is the Export Administration Regulations (“EAR”). These regulations govern whether something may be exported from the US, and whether it may be transferred from one person to another in a foreign country. The US Commerce Department administers these regulations.

Similar to the US Munitions List under ITAR, the EAR has its own Commerce Control List (CCL). This is a list of items that may have military use and not just commercial use. The vast majority of what’s covered under the EAR are just commercial exports and are not on the CCL.

What counts as an “export”? An export could be any of the following:

1.An actual shipment of an item outside the US;

2. Releasing or transferring technology (including source code) to a foreign person within the US;

3. Transferring registration, control, or ownership of spacecraft, in certain circumstances.

General Prohibitions. The EAR contains a list of 10 General Prohibitions. I won’t list them all in excruciating detail here, but basically there are certain things that are prohibited when it comes to exports, and they’re all more or less common sense. Unless you have a license or an exception applies, you cannot export anything to certain countries (e.g. North Korea, Iran, Syria, etc.), or to an end-user (or end-use) that is specifically prohibited. You can’t export things that are on the CCL (i.e., that have potential military use). You cannot perform certain activities that are related to nuclear explosives, missiles, chemical weapons, or biological weapons. You also cannot export things that even pass through a list of certain countries (e.g. North Korea again, Cambodia, Laos, Vietnam, and about a dozen others) without a license. Finally – you cannot violate the terms or conditions of a license, license exception, or any order issued under the EAR, and you also cannot export, transfer, forward, or do anything else with an item subject to the EAR with the knowledge that a violation of the EAR would occur.

Summary

These are just a few of the laws or regulations that govern the aerospace industry and space activities, but they are three of the biggest and most important to know about.

How to build a rocket, or achieve any goal, step 2: Research

As I mentioned in the last post, it is impossible to accurately convey just how little I knew about the whole subject of rockets when I first started thinking about building and launching one. I was completely in the dark, waving my arms around wildly in front of me and unable to see anything. Incidentally, this is my typical research technique.

image credit: pitt honors blog

I initially turned to my good friends Google, Reddit, and Quora. As you might guess, this led me down all sorts of rabbit holes. But this is exactly what you want at this early stage.

I discovered, for example, that there are two large organizations in the US dedicated to amateur rocketry: the National Association of Rocketry (NAR) and Tripoli. Both have been around for decades, and both have hundreds of local clubs spread out across the country – clubs full of other people who share similar interests in rocketry and that periodically host rocket launch events.

I found one local Seattle club, Washington Aerospace Club (WAC), and joined right away. I attended a couple of meetings in person (just before the pandemic hit) and was fascinated that there was a local group of like-minded people who were just really into building and launching rockets. I made some new friends and also found a couple much more experienced people as mentors. More on that below, but finding a mentor is highly recommended.

There’s a lot to learn about building a rocket, whether small or large. There’s also a lot to learn about launching a rocket. Construction techniques, types of rockets, motor sizes and classes, recovery methods, launch pads and towers – the list goes on without end, and that’s without getting into the more sophisticated systems and electronics. I’ve written extensively in previous articles on my blog about many of the basics in rocketry for those who are interested.

But the point is that I needed a crash course, a rockets 101, and I had to do some serious information gathering to even have a bare minimum of competence in setting a goal.

How to do your own research

To take another potential non-rocketry goal at random: let’s say I’ve always wanted to climb Mt. Everest, or some other large and ominous mountain. I know absolutely nothing about this, so where would I start?

I know my end goal in this scenario – scale the mountain and get to the summit, preferably alive. That’s pretty clear, specific, and measurable. But how exactly do I get there, literally or figuratively?

I don’t know enough to even come up with a reasonable plan at this stage. I’d need to do some research, which would start out by brainstorming and asking logical questions: where does a person start (physically) when beginning the climb? Some sort of base camp? Is this something you can do alone, or do people generally hire a professional guide and/or go in a group with others? What kind of clothing and equipment do I need? How long does something like this take – days, weeks, months? Do you have to train ahead of time? What dangers do I need to be aware of? The list of questions goes on.

Or let’s take a less lofty goal, but one that to many people is much more important: passing a big exam you have coming up in the future. Maybe it’s your final exam in a class, or maybe it’s a one-time licensing exam for your career. You know the goal here: get a passing score, or get as high a score as possible. That’s specific and measurable, and almost entirely within your control. But how to do it?

This might not appear as extreme as scaling Mt. Everest, but it can still be pretty stressful and demanding, depending on the subject and the exam, and on what kind of test-taker you are. You wouldn’t be starting out totally in the dark – at the very least, you know that you need to study a lot, and you probably know how to study relatively well.

But even in this scenario, you would benefit from doing some research. We can all stand to improve our study habits, and there are lots of tips and tricks and “hacks” you could use to help. For a really big test, where you will need to devote countless hours to studying, it might be worth looking into ways to boost your studying and use your time more efficiently. Maybe flashcards would help you with memorization, or maybe a buddy will keep you accountable to ensure you’re not slacking.

As mentioned earlier, a mentor can be very helpful as well. It may not be strictly required or worthwhile depending on the particular goal – for example, you probably don’t need a mentor to pass a test, even a very big and difficult one. But if you were planning to scale Mt. Everest, or even run a marathon, a mentor could really come in handy. Receiving the benefits of advice and guidance from someone who has real life experience in your field is absolutely invaluable.

So go ahead – spend a few hours on Google or Wikipedia, get involved in a local organization or club, find a mentor, and do some old fashioned research. And then you’ll be ready for step 3: creating your plan.

How to build a rocket, or achieve any goal, step 1: Set the goal

Is it legal to build and launch your own rocket?

man in green jacket looking up at the sky, with snow covered pine trees in background
me, pretending to daydream

A few years ago, I was daydreaming, and this question occurred to me. I quickly realized I had no idea what the answer was. It also raised dozens of related questions: am I capable of doing this by myself? Do you need some sort of government approval? What are the rules? Are there limits on how big the rocket could be? Could I put something into orbit? What if my rocket blew up, or came crashing down onto someone else? Putting aside any potential comedic value, this could create some big liability for me.

Let me step back for just a moment. I’ve always been interested everything related to space, astronomy, or rockets. As a kid, I read lots of science fiction books on space travel. The Foundation series by Isaac Asimov was (is, still) my favorite book series of all time. Fast forward a few years, and as an adult, I watch with fascination every time that Elon Musk makes an announcement or SpaceX lands one of its rockets vertically, in something that looks like it is straight out of sci-fi. But I’m not actually a rocket scientist. I never considered building a rocket myself. I didn’t even know it was possible to build one, unless you were an enormous government agency like NASA, or a handful of large private corporations – Blue Origin, SpaceX, Rocket Lab, Astra, or other similar large companies. It sounds… complicated.

Now, for the first time, I started thinking about it. Maybe I could build my own rocket. Why not? What the hell?

Of course, I need to stress just how little I knew at the time. To be fair, I should also stress just how little I know even now, but astoundingly, it was even less then. I was totally in the dark. I didn’t know there were local clubs all across the United States where amateurs built and launched small rockets as a hobby. I didn’t know that some people took that hobby to much greater extremes and built relatively sophisticated large high-powered rockets. I didn’t know the rocket body and rocket motor were two completely different things, or what obstacles would be involved in building one. I didn’t know that launching a small low power rocket to 1,000 ft was something that even a child could do, whereas hitting 100,000 ft was a remarkable achievement that generally takes a whole team of very smart and very experienced experts in the field – and very few people (or groups) have ever achieved it.

Suffice it to say, if I listed everything that I didn’t know when I first started, I would never finish writing this article.

But I was curious, and I started looking into it. Setting and fine-tuning the goal was an iterative process. I had to do some basic research and find out more, only to go back and tweak the goal. Putting something into orbit is pretty unrealistic, for a lone individual doing this in their spare time. But building and launching a “high power rocket” (which is defined a certain way, based on the size of its motor) was attainable, at least after some smaller rockets and ample practice.

I ordered a small, low power rocket kit and started putting it together. I realized I really enjoy the process of building, and learning more about different rocket parts and what functions they perform. The longer term goal was to build a high power rocket, but I had to start somewhere as I’d never done this before.

How to set your goal

You are not me, of course, and chances are, you don’t plan to build a rocket yourself. Perhaps you don’t want to blow yourself up, or perhaps you’re just not interested in rockets. No matter. (Hats off to you for reading this anyway on a blog primarily dedicated to rockets.)

What’s important here is coming up with your own goal. This is easier said than done. You know what you’re interested in, or passionate about, and you generally can’t go wrong spending your time doing something enjoyable. But a goal needs to be narrower, more targeted – something where you know when you’ve achieved it, where you can cross it off a list (figuratively or metaphorically) and say yes – I did it. In other words, it needs to be specific and measurable.

It also needs to be largely within your control. True, nothing is ever 100 percent within your control. Life has plenty of external circumstances and obstacles that can be thrown in your path. A global pandemic might occur, for example, or you might be hit with a stray high power rocket (don’t look at me). But you don’t want to choose a goal that is largely outside of your control, as a starting point, no matter what you do. That’s a sure path to frustration and disappointment – and wouldn’t be particularly satisfying even if you happened to achieve it, by chance.

Consider the time period involved as well. There’s no magic number as a minimum or maximum, but you probably don’t need to go through a lot of planning to achieve a relatively simple goal that can easily be done in an hour. At the other extreme, you don’t necessarily want a goal that takes decades and ultimately consumes the rest of your life. In that case, you’d be better off breaking it into several smaller goals, with more reasonable timeframes.

You may not be starting out as hopelessly naive as I did. But once you decide to set a specific goal, you will likely need to go through a similarly iterative process, learning more and then revising the goal accordingly.

How to build a rocket, or achieve any other goal

I’ve been thinking for a while now that I should write something at greater length about how to build a rocket. Not the technical stuff – I’ve written extensively already about epoxy and airframes and electronics – but just the whole journey and mindset. I started with no knowledge or experience and, through a lot of trial and error, I still have no idea what I’m doing – but I could at least share the lessons I’ve learned so far.

smiling man in jeans and green coat standing outside holding a large white and red rocket horizontally
i built this

Perhaps these lessons could be generalized to a lot of other things. Not everyone necessarily wants to build a rocket, or so I’m told. But everyone has their own goals, just as ambitious and often even more so. And everyone has to complete some sort of personal or professional journey in order to get there.

So in the spirit of inclusiveness, here’s what I’ve learned since starting my rocketry journey that can be more broadly applied to any ambitious (or totally mundane) goals in your own life.

1. Set the goal. Figure out exactly what you want to do. This sounds like an obvious starting point, but it’s often easier said than done. You likely already know what you’d like to do, but sometimes you have a general idea and it’s just a little vague. Try to really get specific and measurable. For example, “I’d like to learn more” about some particular topic may be a little fuzzy, whereas “I will complete – and pass – this online course” about that topic is more specifically achievable.

2. Do some research. Find out everything you can about your specific goal and how to make it happen. Google it and poke around on the internet. Ask smarter and more experienced people for advice, and find a mentor. There may be more than one way to achieve your goal; there may also be large obstacles you didn’t foresee. If you’re anything like me, you likely have no idea what you’re getting into – and the more you learn, the more overwhelmed and discouraging it may be. Pro tip: don’t allow yourself to get discouraged too easily. Remember that other people have faced much larger odds and there’s always someone who has done something even more ambitious and/or crazy (of course, they did not always survive the attempt, so plan accordingly).

3. Create a plan. Once you’ve set a narrowly targeted goal and done some basic research related to it, you need a plan. Create a framework where you list every major step needed to achieve the goal. If each step appears daunting, break it into sub-steps so that it’s more manageable. Depending on your original goal and its complexity, you may need to drill down several levels here – maybe some of the smaller steps are still too much, and they need to be broken down further. Keep going, creating something like an outline, and get down to the level where you can complete the first step today – immediately. You may need to do this over several iterations, going back and revising the plan a couple of times to fine-tune it. If it’s too vague, then it’s too hard and won’t get done.

4. Jump in and get started. It’s tempting to just keep revising and tweaking the plan to perfect it. Resist this temptation. While you certainly need to think through your goal, do some research, and come up with a plan, you also cannot continue to plan forever. At a certain point, you need to just jump in and get started – otherwise you will be waiting indefinitely. And there’s a lot to be said for real life experience, and trial and error. Once you start, you’ll run into obstacles you didn’t know about, and perhaps could not have possibly known about, until you moved from the planning phase to the execution phase. You’ll realize certain things were more difficult than you thought, but you’ll also discover entirely new things that you really enjoy, and never would have known about otherwise.

5. Learn from mistakes. Keep plugging away. A slow pace is fine as long as you are making measurable and continuous progress. Remember that when you learn new things, your brain literally changes, forming new physical connections. This is amazing when you think about it. And along those lines, you will not only run into obstacles but you’ll also make some mistakes. Some will be unforced errors that you easily could have avoided. Other mistakes will inevitably happen no matter how well you planned or how much research you did. That’s fine. Don’t get discouraged – as the saying goes, sometimes you win, and sometimes you learn. A mistake or a loss can easily be transformed into a powerful lesson.

Bonus: celebrate completion – and then pivot and reassess. If you follow this plan and have the determination and willpower, you will get there. Don’t worry. And as soon as you achieve that goal, you’re entitled to celebrate and relax. But you may find that after completing this journey, your goal has shifted or evolved. That’s okay too. You are now a different person, with more knowledge and experience than when you first began this journey. As noted previously, your brain has physically rewired itself throughout the learning process. So post-goal completion, you may want to pivot to set a brand new goal, or to build on your previous success. Go for it: you have wisdom now, and you know you can do difficult things.

I’ll expand on each of these in some future posts.

SpaceX Starship SN-8 test launch and fiery crash landing

On December 9, SpaceX conducted a test of its Starship rocket, and it was spectacular.

Starship SN-8 silver metallic rocket standing vertically against starry blue night sky
Starship SN-8

The rocket was called SN-8 (which just stands for Serial Number 8), following the naming pattern for each new iteration of the rocket. Elon Musk originally unveiled the idea for the Starship rocket last fall, and the prototypes SN-5 and SN-6 flew about 500 feet before falling back down. This test of a more complete looking Starship went up 12 kilometers, the vehicle’s first high altitude test.

Many people in the rocketry community watched this live. Below is a great condensed/ time lapse video showing both the launch and the landing, in case you missed it:

Basically, SN-8 had a successful launch and flew vertically for 5 minutes, then began falling back to earth. After cutting its engines, it fell horizontally – the “belly flop” maneuver – which maximizes surface area to help slow its descent.

As a side note, there are a lot of principles in rocketry that are the same whether you’re building and flying a very small model rocket or a colossal commercial rocket, and one of them is drag and aerodynamics. Rockets are sleek and meant to minimize drag and air resistance when they’re moving vertically (or in whatever direction they are pointed), but they are really inefficient and have enormous drag if moving at an angle or horizontally. You’d be surprised how slowly even a large, heavy rocket falls back to the ground without any parachute when it’s falling sideways, and often in multiple (connected) separated pieces.

Starship SN-8 metallic rocket horizontal, falling against light blue sky
image credit: NASA

Anyway, back to SN-8: the belly flop was successful in slowing it down somewhat, and then its engines turned back on to turn the rocket again for a vertical landing. Unfortunately, it was still descending a bit too quickly when it hit the launch pad (perfectly on target) and it exploded in a fireball. But overall, this was an unbelievable achievement.

SpaceX is continuing to innovate and make things that were just recently science fiction into a reality.

My own progress in rocketry may be impressive, but it’s not quite at that level yet. I have some catching up to do!

Going down in flames: how to self-destruct with rockets

The big day was finally here.

man standing in front of small trailer holding large red and white rocket
my pride and joy

I finished building the L3 Fusion rocket in early September and was ready to launch – once the wildfire smoke cleared in the PNW – as soon as the opportunity arose. And in late October, I had my chance.

The plan

On a frigid Saturday morning, with my wife joining the small crowd gathered at the rocket launch out near Walla Walla, WA, I went through my pre-launch checklist and got the rocket ready for flight. It was mostly ready to go – the black powder charges were prepared and loaded inside the rocket, the M-1297 reloadable motor was already built, the wiring for all the electronics was nearly complete. All I needed to do was plug each flight computer into its respective battery, turn on the GoPro camera, and seal up the rocket with a few rivets. And, of course, install the motor. Easy enough.

I’ve described this rocket before but just to quickly recap, the L3 Fusion is a 5.5″ diameter, nearly 8 ft tall high power rocket specifically designed for level 3 certification. It’s available from SBR at fusionrocket.biz and I highly recommend it. The rocket is cardboard and therefore lightweight (only 11 lbs before adding the M motor, which itself weighs another 11 lbs), but it’s reinforced and double-tubed from top to bottom, and then coated with an epoxy – basically making the rocket incredibly strong despite the light weight. On an M-1297 motor, this thing should fly to 9,000 ft or higher.

The key word, of course, is “should.”

I was a bit nervous, but mostly hopeful and excited. The temperature that morning was brisk – around 30 degrees F – and it didn’t take long for my fingers to get cold and then start to feel numb. It’s particularly difficult when you’re trying to mess with very tiny wires and electronics – think eyeglasses screwdriver (which is literally what I was using to attach wires to flight computers).

man holding large rocket horizontally above his head, walking through field
getting the rocket on the pad

But I had built this rocket entirely under the watchful eye of the man who designed it, with his recommendations. We even filmed the entire build as a tutorial for future generations, so this event might go down in history. I can’t say I built the rocket flawlessly, but I was pretty confident the flight would be successful.

As you have probably guessed by now, it was not.

rocket launching with cloud of smoke underneath
L3 Fusion liftoff!

The disaster

The countdown began: 5… 4… 3… 2… 1…

With a thunderous roar, the rocket shot off the pad and climbed into the sky with lightning speed. An M motor is a pretty powerful one, and so this was expected. What was not expected was just a few seconds into the flight, as we watched it ascend and disappear into the sky, was another loud boom. The smoke behind the rocket, which was otherwise basically a vertical line, suddenly changed as the rocket veered sharply from its trajectory.

It broke up and fell back to the ground in multiple pieces, and the certification attempt was a bust.

We mounted a search with half a dozen people scouring the hilly area where we saw the parts land, and we were able to find and recover everything except for the rocket’s three fins. The fins were completely torn off, but a lot of the rest of the rocket was largely undamaged. We even found the electronics, despite the fact that the e-bay fell separately from the rest of the rocket and it’s quite small and difficult to spot in small bushes and tall grasses on a hill.

damaged rocket parts scattered on ground
the aftermath

The aftermath

You can learn a lot from studying a rocket failure, just by seeing what happened to the airframe. You can sometimes learn even more if you recover the electronics and download the flight data (assuming they’re still working properly), and/or from an onboard camera like a GoPro.

In this case, it seemed obvious that the fins experienced fin flutter, which is a phenomenon where the forces acting on the fins are much higher than they should be under normal flight conditions, and the extreme vibrations can either change the rocket’s trajectory or even destroy the fins.

Leaving aside complicated discussions of aerodynamics, fins are really important to a rocket. The rocket itself is streamlined and has a motor at the bottom which accelerates the rocket upwards (vertically), but anytime the rocket deviates from that vertical path, the fins stabilize it. The air pushing against the broad fins with large surface area pushes the bottom of the rocket back into place. It’s an ingenious system that self-corrects without the need for a sophisticated computerized guidance system. (Very sophisticated and large rockets tend not to have fins precisely because they do have such computerized guidance systems.)

Without fins, the rocket has no stability. In this case, the moment one or more fins were damaged due to flutter, the rocket careened significantly off its straight trajectory. Since it was still traveling at very high speeds just a few seconds into the flight, the forces acting on the rocket were tremendous and it was almost instantly destroyed.

close up view of damaged rocket with missing fins
the fin can, minus fins

As you can see in the picture above, the entire bottom of the booster section of the airframe was destroyed and all three fins were torn off. Some of the rest of the airframe was damaged, despite the fact that it was double tubed and reinforced with some serious epoxy. And the drogue (smaller) parachute disappeared into oblivion.

But much of the rocket was surprisingly undamaged. The larger parachute never even unraveled and was completely fine, along with both white shock cords connecting everything together. The nose cone and electronics were in great condition as well. Unfortunately both flight computers had their batteries ripped out during this event so they lost power and stopped recording data after the first few seconds, but both are in perfect working order and only needed new batteries, an easy fix.

The conclusion

It also seems clear that the cause of the fin issue was my own flawed construction technique. Typically, with previous rockets, I’ve built the fin can (i.e. the section of the rocket consisting of the motor mount tube and the fins) outside of the larger diameter rocket airframe, and then inserted the fin can into the airframe. This allowed me to use plenty of epoxy attaching the fins to the motor mount tube at the root edge of the fin, and to build up thick epoxy fillets.

In this case, however, I inserted the motor mount tube into the airframe first, and then attached the fins “through the wall” of the airframe tube. I likely didn’t use nearly enough epoxy on the root edge of the fins when inserting them – and because of this, at least one was yanked off during flight when it experienced flutter.

The reboot

I knew what I had to do. Rebuild the entire rocket (salvaging a few parts from the original if possible, like the parachute and shock cords) and this time, build the fin can outside the airframe and use plenty of epoxy on the fins. Make sure those fins are securely attached and incredibly strong.

Which is exactly what I did, for my level 3 certification attempt #2, just three weeks later.

How did that attempt go, you ask? Well, let me go put on some coffee and I’ll tell you all about it..