The big day was finally here.

I finished building the L3 Fusion rocket in early September and was ready to launch – once the wildfire smoke cleared in the PNW – as soon as the opportunity arose. And in late October, I had my chance.
The plan
On a frigid Saturday morning, with my wife joining the small crowd gathered at the rocket launch out near Walla Walla, WA, I went through my pre-launch checklist and got the rocket ready for flight. It was mostly ready to go – the black powder charges were prepared and loaded inside the rocket, the M-1297 reloadable motor was already built, the wiring for all the electronics was nearly complete. All I needed to do was plug each flight computer into its respective battery, turn on the GoPro camera, and seal up the rocket with a few rivets. And, of course, install the motor. Easy enough.
I’ve described this rocket before but just to quickly recap, the L3 Fusion is a 5.5″ diameter, nearly 8 ft tall high power rocket specifically designed for level 3 certification. It’s available from SBR at fusionrocket.biz and I highly recommend it. The rocket is cardboard and therefore lightweight (only 11 lbs before adding the M motor, which itself weighs another 11 lbs), but it’s reinforced and double-tubed from top to bottom, and then coated with an epoxy – basically making the rocket incredibly strong despite the light weight. On an M-1297 motor, this thing should fly to 9,000 ft or higher.
The key word, of course, is “should.”
I was a bit nervous, but mostly hopeful and excited. The temperature that morning was brisk – around 30 degrees F – and it didn’t take long for my fingers to get cold and then start to feel numb. It’s particularly difficult when you’re trying to mess with very tiny wires and electronics – think eyeglasses screwdriver (which is literally what I was using to attach wires to flight computers).

But I had built this rocket entirely under the watchful eye of the man who designed it, with his recommendations. We even filmed the entire build as a tutorial for future generations, so this event might go down in history. I can’t say I built the rocket flawlessly, but I was pretty confident the flight would be successful.
As you have probably guessed by now, it was not.

The disaster
The countdown began: 5… 4… 3… 2… 1…
With a thunderous roar, the rocket shot off the pad and climbed into the sky with lightning speed. An M motor is a pretty powerful one, and so this was expected. What was not expected was just a few seconds into the flight, as we watched it ascend and disappear into the sky, was another loud boom. The smoke behind the rocket, which was otherwise basically a vertical line, suddenly changed as the rocket veered sharply from its trajectory.
It broke up and fell back to the ground in multiple pieces, and the certification attempt was a bust.
We mounted a search with half a dozen people scouring the hilly area where we saw the parts land, and we were able to find and recover everything except for the rocket’s three fins. The fins were completely torn off, but a lot of the rest of the rocket was largely undamaged. We even found the electronics, despite the fact that the e-bay fell separately from the rest of the rocket and it’s quite small and difficult to spot in small bushes and tall grasses on a hill.

The aftermath
You can learn a lot from studying a rocket failure, just by seeing what happened to the airframe. You can sometimes learn even more if you recover the electronics and download the flight data (assuming they’re still working properly), and/or from an onboard camera like a GoPro.
In this case, it seemed obvious that the fins experienced fin flutter, which is a phenomenon where the forces acting on the fins are much higher than they should be under normal flight conditions, and the extreme vibrations can either change the rocket’s trajectory or even destroy the fins.
Leaving aside complicated discussions of aerodynamics, fins are really important to a rocket. The rocket itself is streamlined and has a motor at the bottom which accelerates the rocket upwards (vertically), but anytime the rocket deviates from that vertical path, the fins stabilize it. The air pushing against the broad fins with large surface area pushes the bottom of the rocket back into place. It’s an ingenious system that self-corrects without the need for a sophisticated computerized guidance system. (Very sophisticated and large rockets tend not to have fins precisely because they do have such computerized guidance systems.)
Without fins, the rocket has no stability. In this case, the moment one or more fins were damaged due to flutter, the rocket careened significantly off its straight trajectory. Since it was still traveling at very high speeds just a few seconds into the flight, the forces acting on the rocket were tremendous and it was almost instantly destroyed.

As you can see in the picture above, the entire bottom of the booster section of the airframe was destroyed and all three fins were torn off. Some of the rest of the airframe was damaged, despite the fact that it was double tubed and reinforced with some serious epoxy. And the drogue (smaller) parachute disappeared into oblivion.
But much of the rocket was surprisingly undamaged. The larger parachute never even unraveled and was completely fine, along with both white shock cords connecting everything together. The nose cone and electronics were in great condition as well. Unfortunately both flight computers had their batteries ripped out during this event so they lost power and stopped recording data after the first few seconds, but both are in perfect working order and only needed new batteries, an easy fix.
The conclusion
It also seems clear that the cause of the fin issue was my own flawed construction technique. Typically, with previous rockets, I’ve built the fin can (i.e. the section of the rocket consisting of the motor mount tube and the fins) outside of the larger diameter rocket airframe, and then inserted the fin can into the airframe. This allowed me to use plenty of epoxy attaching the fins to the motor mount tube at the root edge of the fin, and to build up thick epoxy fillets.
In this case, however, I inserted the motor mount tube into the airframe first, and then attached the fins “through the wall” of the airframe tube. I likely didn’t use nearly enough epoxy on the root edge of the fins when inserting them – and because of this, at least one was yanked off during flight when it experienced flutter.
The reboot
I knew what I had to do. Rebuild the entire rocket (salvaging a few parts from the original if possible, like the parachute and shock cords) and this time, build the fin can outside the airframe and use plenty of epoxy on the fins. Make sure those fins are securely attached and incredibly strong.
Which is exactly what I did, for my level 3 certification attempt #2, just three weeks later.
How did that attempt go, you ask? Well, let me go put on some coffee and I’ll tell you all about it..