I’ve been thinking about spaceports a lot recently.

futuristic spaceport
futuristic spaceport

Not sure why, exactly – I think that they’ve coincidentally been brought to my attention from several independent sources around the same time. I just finished re-reading Isaac Asimov’s Foundation novels (for the hundredth time) in which there are frequent references to spaceports, a necessity in a Galactic Empire spanning around 25 million inhabited worlds. I also recently read an article in The Atlantic about a (very real) spaceport being planned in Melness, at the very northern border of Scotland, and its economic impacts on the local population. And of course I try to keep up with rocketry news in general, including SpaceX and its spaceport at Boca Chica, as well as various launches out of Spaceport America in New Mexico.

All of this makes me a bit curious about the history and origin of spaceports, as well as the rules governing them. When I first got into rocketry, I knew absolutely nothing. Some might say I still know nothing, and this would not be an inaccurate characterization. But in the beginning, no question was too stupid. How do you go about building a rocket? Can anyone just launch a rocket, from anywhere? Is it legal? Are there any rules?

Having never given more than a cursory thought to spaceports before, I’m in a similarly ignorant position. What exactly is a spaceport? What are the criteria to qualify as one? Can anyone – with sufficient time and resources – just build one? Can it only be in certain locations, or could it be anywhere? What does the government have to say about spaceports, if anything?

Time to find out!

Stegosaurus plates

Last year, I took a geology course focused entirely on dinosaurs. It was about as fascinating as you’d expect for someone who loved dinosaurs as a kid (and who didn’t?) and who now gets to to revisit the subject in detail as an adult. I’ve written a few posts as a result. One of the topics from the class that I found rather surprising was stegosaurus plates: why did they evolve, and what function did they serve?

stegosaurus walking in foreground with trees and other dinosaurs in background
stegosaurus with characteristic plates along its back

I initially assumed that the plates were used primarily for defense in some way. They look kind of.. spikey. Maybe it’s like a hedgehog and the spikes ward off predators? But the plates weren’t actually armor or defensive in any way – and upon closer inspection, this makes sense. They didn’t cover very much of the stegosaurus’ body and left most of it vulnerable on the sides and bottom, whether the plates laid flat or stood vertically. What defensive purpose could this serve?

Even more interesting, the plates were not made of solid bone connected to the rest of the spine and skeleton, but rather were lined with grooves that likely meant they contained rich blood vessels. This makes it even less likely the plates were for defense: why expose vulnerable blood vessels to an attacker?

The real function of the plates has been debated, and some paleontologists suggested that the plates were a visual display to recognize other members of the same species, or to attract mates. This is definitely one possibility, although not one I find particularly interesting. But the evidence for blood vessels has also led some to suggest that the plates helped regulate body temperature. In other words, they would have acted as radiators to help the dinosaur cool off when too hot, and as “solar panels” to absorb more sunlight over a greater surface area to help warm the dinosaur when it was too cold.

However, some additional research has demonstrated that while this temperature regulation theory was possible, it probably isn’t why the stegosaurus evolved the plates in the first place and it also likely didn’t have much of a significant effect. If the plates did play a role in helping cool or warm the animal, one obvious question would be why other dinosaurs didn’t evolve something similar. Furthermore, if the plates served this purpose and were really more about function, then they would not have varied so much across different species of stegosaurids. Instead, this makes it more likely that they were simply used for display.

I’d prefer for the functional (temperature regulation) hypothesis to be true, but it seems more likely that the plates evolved more for display. In the end, it’s a debate that remains unsettled. The two different suggestions are not mutually exclusive – both could be true, to some extent. Or perhaps there’s some totally separate explanation that hasn’t yet been proposed by anyone just yet.

Stegosaurus, American Museum of Natural History

Stegosaurus ungulates, National Park Service

Stegosaurus Plate Debate, Smithsonian Magazine

The Stegosaurus Plate Controversy

Hello 2023

I haven’t had a chance to update this blog in a while, which seems to be a common fate for most blogs. I’ve just been uncommonly busy. 

My last update was a few months back in August 2022, shortly after I attempted another L3 certification. As noted there, it was a failed attempt, but as always I learned some important lessons. 

The last post before that was from June 2022 when I attended the 40th annual launch of Large Dangerous Rocket Ships (LDRS) in southern California, way out in the high desert. This was the first time I’d attended a big national launch like this. 

On a personal note, the last six months or so have been nonstop. Shortly after LDRS, we moved from Los Angeles back to the midwest to be closer to family (all in the Chicago area) and the cross-country move, with an 18 month old toddler, was eventful to say the least. We spent fall getting settled into our new home in a new community, figuring out childcare for our daughter, and exploring the area while the weather was still relatively warm. Later in the fall I took another math class, differential equations, which was incredibly demanding and time-consuming, but I successfully completed it – another math class under my belt, after taking calculus I, II, and III, as well as linear algebra last year. 

I still have a lot more classes to take if I want to knock out all of the math and science pre-requisites (one more math, a three-part physics sequence, and four or five engineering classes), but working my way through them slowly is better than not doing it at all. And to be honest, slowly – one class at a time – is all I can possibly muster right now, given my schedule.

Now that this most recent class is over and we’re much more settled into our new place, though, I really want to get back into rocketry. I still have that L3 certification to finish, and I have half a dozen other rocketry projects I want to dive into as well. I’ll be sure to post more updates accordingly!

Large Dangerous Rocket Ships (LDRS) 40th annual launch in California

A rocket launch in the high desert!

san bernardino national forest official brown sign with desert in background
on the way to the launch

Earlier this month, I was able to make it to my first rocket launch in over a year. At first glance, this seems inexcusable for someone whose blog and other social media accounts are primarily dedicated to rockets and rocket launches. In my defense, the past year has been a whirlwind. We moved from Seattle to Los Angeles (with a 5 month old baby) and are getting ready to move out of Los Angeles (with a 17 month old baby). I completed two classes – linear algebra and environmental science – and we tried to see and do as much as possible, knowing that we had just one year to explore southern California. We made it to San Diego (twice!), Santa Barbara, Ojai, Big Bear, Palm Springs and Joshua Tree National Park, and lots of beaches, from Malibu and Santa Monica down through Crystal Cove and Laguna Beach, not to mention the countless things we did and places we ate within LA itself. (Griffith Observatory and California Science Center to name just two.)

desert landscape with sand and dirt in foreground, mountain range in background
lucerne dry lake bed in southern california

That said, LDRS 40 – a national rocket launch – was being held just a few hours’ drive outside of LA. How could I not attend?

people standing or sitting with folding tables and chair, under a tent in the desert
LDRS volunteers

I left my rockets, motors, tools and equipment up in Seattle temporarily before we moved, so I didn’t bring anything to launch myself. But I wanted to take the opportunity to see other rocketeers and some spectacular launches, and to just meet up with old friends and chat.

variety of large rockets lying horizontally
an assortment of large rockets

Large Dangerous Rocket Ships (“LDRS”) is an annual rocket launch hosted by Tripoli Rocketry Association, a national organization, and the Rocketry Organization of California (“ROC”), a local club. LDRS held its 40th annual event in Lucerne Valley, California, on Lucerne Dry Lake Bed, which is very much a desert. The daily high temperatures were about 105 degrees F. Conditions were what you’d expect: very hot and very dry. There were also some strong winds which carried a lot of the dry dust and sand everywhere.

dust storms from strong winds in the desert, with people and tents partially visible
dust storms

It was an awesome experience – my first LDRS annual event, and first large national rocket launch event that I’ve ever attended, and my first launch of any kind in over a year. All you needed were sunglasses and an oversized hat, plenty of sunscreen, a limitless supply of water bottles, plus an N95 if you wanted to breathe. Ideally, in retrospect, I should have just worn an astronaut suit for maximum protection but there’s always next year.

Besides, the intense sun and winds were no match for the enthusiasm of this group of people!

Did dinosaurs have high blood pressure?

I recently took a class all about dinosaurs, and one topic was whether dinosaurs were cold-blooded, which has traditionally been the conventional view, or in fact warm-blooded. The evidence, it turns out, is mixed, and just learning about the different types of evidence is really interesting. One of the pieces of evidence listed stood out to me in particular: dinosaur blood pressure. I thought I would do a little research on this topic to find out more.

sauropods chatting it up

Basically, a warm-blooded (endothermic) metabolism requires high blood pressure to rapidly circulate the blood throughout the body. Endotherms have higher blood pressure than cold-blooded animals (ectotherms). So did dinosaurs have high or low blood pressure? 

At first glance, this doesn’t seem particularly helpful. If we don’t know whether dinosaurs were cold or warm blooded, how would we know their blood pressure levels either? Fascinatingly, it is (somewhat) possible to answer this question!

Since one of the most critical functions of the heart is to pump blood to the brain, we can estimate dinosaur blood pressure based on the vertical distance between the dinosaur’s heart and brain. And we do have lots of fossils where we can measure this distance directly. Considering the extremely long necks of certain gigantic sauropods, this distance could be enormous. If we extrapolate blood pressures in dinosaurs from current animals, the pressures in sauropods would be so high that it is questionable how this was even possible without something rupturing or exploding.

However, the picture is further complicated by a separate but related debate about dinosaur posture. What did sauropods do with their enormously long necks? Did they keep them relatively low to the ground and horizontal when walking and feeding, or did they hold them much higher (closer to vertical) in order, for example, to reach higher vegetation on trees? The answer to this makes a huge difference when estimating blood pressure because it takes a much higher pressure to move blood up a vertical neck, against gravity, than sideways when the neck is kept low. The answer to this is we don’t know for sure, but there seems to be a lot of evidence in favor of the more vertical neck/ posture (from the structure of the bones in the neck), which leaves open the question of how exactly their bodies could pump blood with such high pressure to the brain.

One possibility is a gigantic heart to pump with more power, literally weighing several tons. This would probably be very inefficient, and the problem of such explosive high blood pressure would remain. Another alternative some have proposed are multiple smaller hearts in the neck to assist the primary heart. This isn’t physically impossible, but there doesn’t seem to be any evidence for this either. One other possibility would be using some sort of valves or muscle contractions in the neck, like living giraffes, to transport blood to the brain (although a sauropod neck is much, much longer than a giraffe’s neck).

Paleontologists like Robert Bakker in the 1970s and more recently Michael Habib argue something along these lines. Bakker suggested sauropods use neck muscle contractions to pump blood up the neck. Habib agrees and points to large neck bones called cervical ribs that are actually a very flexible form of bone, and can act as springs. This could have allowed a sauropod with a very long neck to move the blood without an impossibly high blood pressure.

This idea makes sense to me. These sauropod necks that were 30 or 40 feet long must have had extremely powerful muscles. From an evolutionary standpoint, why not co-opt these muscles into more than one function, and use them to assist the heart with pumping blood? Of course like many hypotheses and arguments with dinosaurs, this idea is also not without criticism.

There are other interesting related questions involving blood pressure that would never have occurred to me. For example, no matter what the mechanism to pump blood with such high force to the brain (whether a gigantic heart or assistance from neck muscles), when a sauropod did lower its head to the ground (e.g. to drink water), how did it prevent a huge rush of blood to its head? Modern day giraffes have evolved a web of little arteries that solves this problem, but it’s not clear whether dinosaurs had something similar.

There is a lot of speculation and unanswered questions about dinosaurs’ circulatory system. Unlike the skeleton, it didn’t fossilize and there’s no direct evidence of things like the size of the heart or the structure of arteries. But it’s an interesting area with vigorous debate because these were real problems that had to be addressed, and sauropods managed to address them one way or another!

Further reading:

How Long-Necked Dinosaurs Pumped Blood to Their Brains

The Evidence for Endothermy in Dinosaurs

Of Barosaurus and Blood Pressure

Bakker, Dinosaur feeding behaviour and the origin of flowering plants, Nature

itch slapped

Introducing itch slap!

smiling man holding small box labeled itch slap
slapping *itches

Last summer, Katie and I were getting bit by mosquitoes, and we typically put this strong medical tape over the bite to relieve the itching. At the time, Katie said: why not sell this? WHY NOT INDEED?

Fast forward a few months and I had designed and manufactured a custom adhesive patch for bug bites, and filed a bunch of paperwork to create an LLC, get a unique product UPC/ bar code, and more fun stuff. The patch is an elastic fabric with a medical strength glue, and it effectively eliminates itching.

You can also give it as a gift to any of your friends and family who love hiking, nature, and the outdoors. Let them know they just got *itch slapped!

Also, the company has a serious philanthropic mission and donates 10 percent of all revenue to an organization that fights malaria: Nothing But Nets. So please help us by doing anything from the list below:

  1. Buy it, and leave a review!
    available on amazon:
  2. Follow itch slap on social media!
    Instagram: @itchslap
    Twitter: @itchslapped
  3. Share the post and help us spread the word!

Air & Space Exhibit at the California Science Center

Los Angeles has plenty of sunny weather, and rain is pretty unusual. But recently, it was pouring rain, and we had taken a day off work. What to do? We took the opportunity to check out the local California Science Center! We had never been before, and it had a lot of great exhibits. I was primarily interested in the Air & Space exhibit, and the museum is also the permanent home of the Space Shuttle Endeavor.

replica of the viking lander on mars
replica of the viking lander on mars

The space exhibit is broken out into a few sections: air and aircraft; humans in space; the solar system and planets; and telescopes and stars. The “humans in space” part of the exhibit has some really impressive things on display, including an actual Apollo command module, a Gemini capsule, and a Mercury-Redstone capsule.

apollo command module on display
apollo command module

For those who are less familiar with the details, the US space program back in the 1950s and 60s involved the creation of NASA and several successively ambitious projects designed to accomplish specific goals or milestones:

gemini capsule on display
gemini capsule

Project Mercury. Beginning immediately after the Soviet Union launched the first satellite into orbit (Sputnik in 1957), Project Mercury was the first human spaceflight program in the US and ran from 1958 to 1963. The goal was to put a man into orbit and, of course, return him safely. The program involved 20 spacecraft launches with no crew (some with an animal), and eventually it successfully launched humans into orbit.

Project Gemini. The purpose of Gemini (1961 to 1966) was to develop space travel techniques to support the ability to eventually land astronauts on the moon (which was ultimately done with Apollo). These techniques included things like extra-vehicular activity, rendezvous of spacecraft, and docking. The name Gemini comes from the fact that the spacecraft carried a two-person crew, named after the Gemini twins in Greek mythology.

Project Apollo. Running from 1968 to 1972, the goal of Apollo was to land the first astronauts on the moon. It involved a three person spacecraft and was originally conceived during the Eisenhower administration in the 1950s, but later dedicated to JFK’s goal of landing a man on the moon, and of course eventually achieved its goal with Apollo 11 in 1969.

space shuttle endeavor on display
space shuttle endeavor on display, front view

The highlight of the museum (for me, at least) was the Endeavor exhibit. The US only produced a total of six space shuttles, which were in operation from the first flight in 1981 through the last flight in 2011: Enterprise, Columbia, Challenger, Discovery, Atlantis, and Endeavor. The first shuttle, Enterprise, was only used for testing purposes. Two of the six shuttles, Challenger and Columbia, were lost in two disasters when they disintegrated during their missions, in 1986 and 2003, respectively. That means only four of the six shuttles are still in existence, and the California Science Center houses one of them. The Endeavor was gifted to the museum and, through seemingly herculean efforts, transported to southern California back in 2012.

It was pretty amazing to learn about the difficult journey to physically move the shuttle through the streets of Los Angeles, and to see one of the few remaining shuttles up close.

space shuttle endeavor on display, rear view
space shuttle endeavor on display, rear view

The space shuttle is currently on display in this building, but the museum is in the process of building another even larger building where the shuttle will sit vertically, attached to the booster tanks as if it were ready for launch. This will be the only place in the world where the shuttle will be displayed in this manner. I’m not sure when the exhibit will be completed, but it should be pretty impressive.

I didn’t grow up during the space race in the 1950s and 60s, but rather during the 1980s and 90s when the space shuttle program seemed like the future. Now, of course, it’s been retired and NASA is developing the Space Launch System, and private companies like SpaceX, Blue Origin, and others are building massive rockets to put humans into space (which SpaceX has already successfully done). But this exhibit really hit home for me; I was in awe at the experience of seeing one of the only space shuttles in existence. If you live in LA or are planning to visit, I’d definitely recommend a trip to the California Science Center.

New year updates

New year’s day: seems like a good time for some updates.

man with facial hair and glasses wearing black jacket standing and smiling at camera with green trees in background
during a brief trip to ojai

To say I’ve been busy lately would be a dramatic understatement. Even aside from the pandemic and the general chaos it has created, 2021 has been a pretty crazy year for me. At this time 1 year ago, we were living in the Seattle area and our daughter hadn’t been born yet. Fast forward to today, and she is 11 months old, and we are living in Los Angeles (with another big cross country move to come in another few months).

During 2021 I can’t say I accomplished much in rocketry, but I did take several classes at local community colleges: a chemistry prep course; the full chemistry course with lab; a geology class about dinosaurs; and linear (matrix) algebra. In 2019, I took the three-part calculus series, and linear algebra was the first post-calculus math class I’ve ever taken. I’d like to eventually get an engineering degree and these are just math and science pre-requisites, but regardless of whether I ultimately get the degree, I just enjoy learning – and these are some tough classes that really force me to do some hard work and expand my mind.

Since arriving in Los Angeles about six months ago, we’ve also made an effort to get out and explore the local area – with the important caveats that this is taking place during a global pandemic and we have a baby. We’ve made it to San Diego, Santa Barbara, Ojai, and Big Bear Lake within a few hours’ drive of LA; several beaches, many hikes, and a few botanical gardens; and much more. Most recently we just visited the California Science Center, which has an awesome space exhibit and actually houses one of the (now retired) space shuttles. I’ll post more about this exhibit shortly!

Space law and asteroid mining

Can you have property rights in space? Can an individual, or a private company, or a government, claim territory on the moon, or on Mars? What about asteroid mining?

asteroid in space
can you own this?

The short answer is: there isn’t settled law on these questions. And nobody has actually attempted it yet, so the law is all theoretical. But given aerospace developments in recent years, the question is increasingly important. Blue Origin, SpaceX, and other private/ commercial space launch companies have publicly stated they intend to land humans on the moon or Mars, or mine asteroids for resources. Other countries’ governments are developing and launching large commercial rockets (e.g. China). Property rights in space may become very significant.

International law and treaties

One complicating but fundamental starting point is that different countries (i.e. states) have their own laws. There isn’t a single overarching legal framework, but rather just individual countries’ laws. Sometimes, multiple countries sign a mutually binding treaty and create an “international” law, but this is a fuzzy concept. Some might argue that there’s no such thing as international law, really, since there’s not a single international or world government. For that reason, it frequently may not be properly enforced. The United Nations is an example of this.

Furthermore, each country can choose to sign onto an international agreement or treaty, and not every country does – so some countries may not join the agreement, and can effectively do whatever they want.

That said, agreements and treaties among countries do exist, and are treated as binding with legal obligations. Below, I mention a few of the key treaties.

The 1967 Outer Space Treaty

Back in 1967, when the United States and the Soviet Union had competing space programs but neither had yet landed a human on the moon, a treaty was entered into among both countries and the United Kingdom. Formally known as the “Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies,” it is generally shorthanded as the 1967 Outer Space Treaty, and it forms the basis for international space law. The treaty was entered into and became effective in 1967 with the US, USSR, and UK, but as of 2021, well over 100 countries are parties to the agreement (about 111 have signed and ratified it, while another 23 have signed but not yet ratified). The United States is one of these parties.

In general, this is an arms control or “non-armament” treaty, meaning that it basically prohibits countries from putting weapons of mass destruction (including nuclear weapons) in space or establishing military bases on celestial bodies. Instead, it limits use of the moon and other celestial bodies to peaceful purposes only.

The treaty is actually fascinating and, in some respects, way ahead of its time. Key passages from Article I include:

The exploration and use of outer space, including the Moon and other celestial bodies, shall be carried out for the benefit and in the interests of all countries, irrespective of their degree of economic or scientific development, and shall be the province of all mankind.

Article I, sentence 1

Outer space, including the Moon and other celestial bodies, shall be free for exploration and use by all States without discrimination of any kind, on a basis of equality and in accordance with international law, and there shall be free access to all areas of celestial bodies.

Article I, sentence 2

There shall be freedom of scientific investigation in outer space, including the Moon and other celestial bodies, and States shall facilitate and encourage international cooperation in such investigation.

Article I, sentence 3

Section II discusses the principle of non-appropriation:

Outer space, including the Moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means.

Article II

Finally, worth highlighting here, section VI of the treaty discusses international responsibility:

State Parties to the Treaty shall bear international responsibility for national activities in outer space, including the Moon and other celestial bodies, whether such activities are carried on by governmental agencies or by non-governmental entities, and for assuring that national activities are carried out in conformity with the provisions set forth in the present Treaty.

Article VI, sentence 1

The activities of non-governmental entities in outer space, including the Moon and other celestial bodies, shall require authorization and continuing supervision by the appropriate State Party to the Treaty.

Article VI, sentence 2

It’s not really clear whether an activity like asteroid mining would be permitted under this treaty. It states that the moon and other celestial bodies are not subject to appropriation, but it also says that they must be free for exploration and use.

The Moon Agreement

This agreement applies to the moon, but also to all other celestial bodies within the solar system (i.e., everything other than the earth), and it went into effect in 1984. What’s perhaps most important to note is that as of 2021, there are only 18 countries that are parties to the Moon Agreement (and another 4 that have signed it, but have not yet ratified). None of them are spacefaring countries capable of orbital flight. This means, of course, the United States is not a party.

Similar to the 1967 Outer Space Treaty, the Moon Agreement states that the moon is not subject to any national appropriation. It says that the parties have the right to exploration and use of the moon. However, it goes further and says that neither the surface or the subsurface of the moon, or any of its natural resources, shall become property of any state, or any non-governmental organization, or any individual person. And placing any personnel, space vehicles, equipment, facilities, etc. on the moon’s surface or beneath its surface does not create any right of ownership over the moon. Again, these provisions apply to all celestial bodies, as well as the moon itself, which would include Mars and asteroids. But it wouldn’t be binding on the US or any individuals or organizations within the US.

The US Commercial Space Launch Competitiveness Act

In the US, private space launch companies started to lobby Congress to pass a law clarifying that they would be able to mine or harvest resources in space, whether from the moon, other planets, or asteroids. As a result of these efforts, Congress passed this statute in 2015. In an obvious and eye-rolling attempt to reverse engineer the law’s name to arrive at the desired acronym, it is also known as the Spurring Private Aerospace Competitiveness and Entrepreneurship (“SPACE”) Act. It expressly allows US citizens and companies to “engage in the commercial exploration and exploitation of space resources,” including water and minerals. The law states:

A United States citizen engaged in commercial recovery of an asteroid resource or a space resource under this chapter shall be entitled to any asteroid resource or space resource obtained, including to possess, own, transport, use, and sell the asteroid resource or space resource obtained in accordance with applicable law, including the international obligations of the United States.

Section 51303, Asteroid resource and space resource rights

As you might suspect, some people have argued that this US law violates the 1967 Outer Space Treaty. Right now, this is all very theoretical since nobody is actually mining or exploiting resources from space (yet). Which leads me to…

The Artemis Accords

In 2020, the Artemis Accords were signed as an international agreement between countries participating in the Artemis Program, which is the US-led program to return humans to the moon. About a dozen countries, including the US, have signed this agreement. The Artemis Accords state, in relevant part:

The Signatories emphasize that the extraction and utilization of space resources, including any recovery from the surface or subsurface of the Moon, Mars, comets, or asteroids, should be executed in a manner that complies with the Outer Space Treaty and in support of safe and sustainable space activities. The Signatories affirm that the extraction of space resources does not inherently constitute national appropriation under Article II of the Outer Space Treaty, and that contracts and other legal instruments relating to space resources should be consistent with that Treaty.

Section 10 – Space Resources

This is an attempt to bridge the gap between the 1967 Outer Space Treaty (which prohibits appropriation of the moon and other celestial bodies) and the 2015 US SPACE Act (which allows extraction of resources), by stating that “extraction of space resources does not inherently constitute national appropriation” under the Outer Space Treaty.

The 2015 US SPACE Act and the US-backed Artemis Accords have drawn some criticism for being too US-centric and protecting American interests in space. The bold assertion that extraction of space resources does not constitute appropriation (a violation of the Outer Space Treaty) is an interpretation of the treaty, but not necessarily the only or best interpretation. And importantly, the Accords are not really considered a “treaty” because they did not go through the United Nations’ treaty process – rather, they are just a series of bilateral agreements between the US and various other countries. In other words, they may or may not have any value in terms of being an official interpretation of the Outer Space Treaty.

Asteroid Mining

In conclusion – the 1967 Outer Space Treaty is the primary international law on point here, and it is not clear whether it allows or prohibits extracting resources in space. More recent and more specific US law says that it is allowed – but this could be challenged as a violation of the international treaty.

Assuming for practical purposes that mining or extracting resources from the moon or asteroids were attempted by an individual or private company in the US, additional questions would arise. Would you be required to obtain a permit or license from the US government? If so, which agency or department would grant the license – the FAA, which generally regulates air and space flight? The Department of Commerce, which regulates economic activity? Another agency?

None of this is clear today. But these are just some of the important questions that will need to be answered as companies like SpaceX or Blue Origin expand their space launch programs over the next few years.