The life and legacy of Wernher von Braun

I recently finished reading an excellent biography about Wernher von Braun. While browsing a used bookstore in Victoria, BC last year, I picked this book up on a whim. I really didn’t know anything at all about the man or his life, prior to this. In retrospect, I cannot believe I didn’t know anything, and I have to say I’m absolutely floored.

The book is Von Braun: Dreamer of Space, Engineer of War, by Michael J. Neufeld.

black and white photo of von Braun sitting at his desk with model rockets
Werner von Braun, the German-born American rocket engineer, with model rockets

The title really does a great job of summarizing the theme of the book. Von Braun’s life was in many ways a dichotomy between, on the one hand, his lofty intentions, a fascination with rockets and plans to use them for spaceflight and travel to the moon and distant worlds, and on the other hand, the darker side of his achievements, which were the creation of a weapon of immense destruction and war.

Pre-1945: German background and the Nazi regime

Von Braun straddled two worlds in many different ways, both literally and metaphorically. He was born and raised in Germany, received an education as an engineer and became an extremely effective and capable leader in engineering management – that is, leading large, complex engineering projects and organizations involving hundreds or even thousands of people.

As the Nazi regime came to power, von Braun was gradually pulled into its orbit (or intentionally gravitated towards it, depending on your view). He saw that the military and government were a powerful source of funding for the research and development of rockets, and von Braun seized the opportunity.

At Peenemunde, he developed rockets for the Nazi regime, including the infamous V-2, the world’s first long-range guided ballistic missile. The Germans used the V-2 during World War II to attack Allied cities, as retribution for Allied bombings of German cities (thus the German name for the rocket, Vergeltungswaffe 2, meaning “Retribution Weapon 2”). The V-2 was also the first rocket to travel outside the earth’s atmosphere into space. The rocket von Braun brought to fruition was therefore used to bring destruction during the war, but also for pioneering spaceflight, a familiar duality in von Braun’s life.

Von Braun joined the Nazi party and even met Hitler on several occasions. He rose in the party’s ranks and became an SS officer. And yet he never seemed particularly enthusiastic or dedicated to the Nazi ideology or cause. It was clear that his only passion was rocketry, and the Nazi regime was willing to pour vast amounts of money into his organization at Peenemunde. At the same time, he never seems to have strongly objected to what the Nazis were doing, although he likely wasn’t aware of the full horrors of the Holocaust at that time. Years (and decades) after the war ended, von Braun condemned the regime, but of course that was much easier to do in retrospect and seems opportunistic.

black and white photo of three men holding a large model rocket above their heads
William Pickering, James Van Allen and Wernher Von Braun hold a model of Explorer 1 in triumph after the successful launch of a US satellite

Post-1945: Spaceflight program leadership in the United States

After World War II ended in 1945, von Braun emigrated to the United States, one of several dozen scientists brought over as part of “Operation Paperclip.” He settled with his wife in Huntsville, Alabama, and with many other German workers as part of his organization. Von Braun lived in Huntsville for the next twenty years, raising a family there, and working for the US Army. He played a lead role in developing the Redstone rocket, which was used for the first live nuclear ballistic missile tests for the US, as well as the Jupiter-C rocket, which launched the first US satellite, Explorer 1, in 1958 (although this was not the world’s first satellite, which was the USSR’s Sputnik 1, in 1957).

Von Braun may have been opportunistic, but he thoroughly embraced his new American identity and believed that the US should lead the “free world” in the space race against the Soviet Union.

He later joined the newly created NASA in 1960 and played a major role in historic NASA projects, including the Mercury Redstone, Gemini, and Apollo programs. He was dedicated to the success of the Apollo program, and under his leadership, Apollo had a flawless track record for safety and success. The Apollo 11 lunar landing – the achievement of seeing humans actually set foot on the moon in 1969 – was probably the highlight of his life.

black and white photo of von Braun standing in front of enormous rocket engines
von Braun standing in front of the engines of the Saturn V

This is of course only a summary of von Braun’s life, and in this summary I am doing him an enormous disservice. Beyond his engineering, technical, and management genius, von Braun also increasingly became a popular household name as he began appearing in Walt Disney-produced documentaries in the 1950s about the future of spaceflight, and man in space. These documentaries themselves are fascinating, in retrospect, and are the subject of an entire separate post I plan to write.

A controversial legacy

Von Braun was a lifelong spaceflight enthusiast and strongly advocated for putting humans into space and going to the moon. It is safe to say that he is one of the most important individuals of the twentieth century: he basically led the development of the liquid fuel rocket into a mature technology, and he was directly responsible for the success of NASA’s Apollo program, among other accomplishments. And yet his rockets also have the legacy of destruction. He is ultimately responsible for the development of intercontinental ballistic missiles (ICBMs) and the dangerous cloud of nuclear war that hung over the entire world for the latter half of the twentieth century, and continues to hang over us to this day.

Intriguingly, this is a man who was an SS officer in the Nazi party and built weapons for Adolf Hitler, and yet also joined the US government and obtained security clearances, rose in its ranks, and personally met with multiple presidents including Dwight Eisenhower, John F. Kennedy, and Lyndon Johnson.

I highly recommend this book for a thoughtful, balanced study of von Braun’s life in much more fascinating detail.

How to build a fiberglass rocket, part 11: fin fillets

The epic fin-ale to the fin attachment series! (Pun intended.)

So far, we’ve attached the fins using the “through the wall” method with epoxy at several points: (1) the fin root, where it directly touches the motor mount tube, and (2) all along the inside edges of the fins and motor mount tube using a syringe to inject it. This created an incredibly strong foundation (especially by mixing some chopped carbon fiber into the epoxy), and at last we can turn to (3) the outside of the rocket to create fin fillets.

fiberglass rocket and fins on workbench, with masking tape creating lines
making tape to create lines

The first step here is to measure and mark approx. 3/8 inch from the joint, along both the airframe and the fin itself, and draw parallel lines on each. Then follow this up with masking tape along the full length of each line. Using this technique, you can apply the epoxy fillet, and when you remove the tape afterwards, it will leave a very clean edge. Generally you want to wait before removing the tape so the epoxy has a chance to partially cure – but it’s easiest to remove the tape if you do so before it fully cures.

rear view of rocket with epoxy fin fillets
aerodynamic and aesthetically pleasing

For the epoxy mixture, the difference this time will be the addition of a thickening agent so it’s not quite as runny and it maintains its shape. Specifically, this means first mixing the two part epoxy (resin and hardener), then mixing in some chopped carbon fiber as before, and finally adding the thickener.

As I mentioned earlier, I’m using West System resin and hardener, and also for the thickener. The stuff is extremely lightweight – so much that it’s almost difficult to even take the can’s lid on or off, as the slightest breeze or air movement will cause it to fly up into the air like dust. Of course, this is something that should be done only while wearing a respirator or face mask.

Once the epoxy is sufficiently thickened, it should have the consistency of peanut butter – spreadable, but will more or less hold its shape.

Finally, a round length of wood (e.g. a broomstick) or plastic (e.g. metal pipe or PVC pipe) will be very helpful at this stage, particularly one that has a 3/4″ or 1″ diameter. I happened to have some spare 3/4″ PVC pipe lying around from my earlier project running electrical wire to the shed to build the workshop. The idea here is to spread some epoxy on at the joint where each fin touches the rocket body, and then to use the PVC pipe to run along the full length, creating a nice, smooth, rounded fin fillet.

a first pass

Above is a picture showing my partial progress with this technique. It can take some practice getting the right epoxy consistency with the thickener, and also using the pipe to create the rounded fillet. But once finished, this will provide the third and final bond of the fins to the rocket body.

As noted above, you can wait before removing the masking tape, but don’t wait so long that the epoxy fully cures.

After one set of fins is complete, as shown above, you can rotate the rocket 120 degrees and repeat (although give the epoxy some time to cure, first, before rotating). Repeat a second time, and then rotate and repeat a third.

Once all the fin fillets are completed, you’re done with the actual rocket build! The rest is cosmetic work or just attaching things to this newly constructed rocket: priming and painting (which, frankly, is optional), attaching recovery harnesses and parachutes (slightly less optional but simple), and conducting ground testing.

How to build a fiberglass rocket, part 10: epoxy injection for fins

Fair warning here: I’m actually splitting the “attaching the fins” information into three separate posts. This is not out of a sense of malice or sadism, but simply because there’s a lot going on with the fins.

The prior post (part 1 of 3 in this epic fin series) was basically the prep work and first few steps to secure the fins to the rocket body by using some epoxy and inserting the fin root through the wall where it can bond against the motor mount tube inside. Along with a printed fin alignment guide and a bunch of heavy objects, this keeps the fins in place and serves as a starting point for the multi-step approach for attaching them.

This post (part 2 of 3) involves epoxy, a syringe, and a bunch of strategically drilled holes. This might sound like the setup to a bad joke, but it’s actually literal and straightforward.

If you’ve been following along so far (whether with your actual fiberglass rocket build, or just conceptually in your head), you know that inside the airframe there is a motor mount tube, held in place and centered with the aptly-named centering rings. The top and bottom of each fin should just barely be touching a centering ring, inside.

fiberglass rocket with fins attached, sitting on workbench, partly suspended in air
ready to inject!

The idea here is to take the syringe and inject the epoxy into each hole. There’s two holes per fin (so 12 total in this case for 6 fins), with one hole on either side of each fin, roughly 1/2 inch away from the fin. Using a typical plastic syringe that you can find at a local drugstore, you can inject 10 ml at a time, and you should inject roughly 25 ml for each side of the rocket, split evenly among 4 holes. The rocket should be positioned horizontally and completely level, as in the above picture.

Once the epoxy has been injected into these 4 holes, you tilt the entire rocket forwards and then backwards, slowly, in order to move the epoxy around inside and completely coat the area where each fin touches the motor mount. The centering rings on each side should create a “dam” to prevent the epoxy from going any further past the edge of the fin, if everything is aligned reasonably well.

(If not, well, the epoxy may ooze out some of the other holes below a little. Not a huge deal, but may require a bit of extra cleanup.)

Once the epoxy is spread evenly inside, it needs some time to cure. Come back a few hours later. At this point, you can rotate the rocket 1/3 of the way around and repeat the process for the next 4 holes, and then finally a third time after that. Ensure each time that the rocket is level as the epoxy cures, so it doesn’t slowly ooze and collect in a lopsided fashion. This would not be ideal for a uniform fin attachment, it could also throw the rocket off balance in its weight.

epoxy in plastic mixing cup with popsicle stick on workbench
two part epoxy mix

Above is a picture of the two part epoxy mix (resin and hardener) when combined and thoroughly stirred in a small plastic cup. The syringe I used is pictured as well. You may need several since they can get clogged over time.

One final note here: you can also mix some chopped carbon fiber (pictured below) with the epoxy, and again mix thoroughly. The color will darken noticeably. This epoxy mixed with chopped carbon fiber will significantly strengthen the bond as it cures. In other words, those fins are never coming off.

epoxy darkened with chopped carbon fiber, in plastic mixing cup with popsicle stick on workbench
epoxy mixed with chopped carbon fiber

This epoxy injection technique is pretty cool, and it’s been tested and used successfully for many years. Try it!

In my next post (part 3 of 3 in this series on attaching fiberglass fins) I’ll briefly cover the final step: creating external fin fillets where each fin touches the rocket airframe. It gives one final layer of protection to ensure the fins are secured, and also looks more aerodynamic.

How to build a fiberglass rocket, part 9: attaching fins

Exciting times! I’m ready to attach the fins.

If you’ve never put together a rocket before, well, I’m baffled that you are reading this blog. But typically, a rocket will have either 3 or 4 fins, which are placed symmetrically – equally spaced out, in the 360 degrees around the center. If 3 fins, then they’d be 120 degrees apart; if 4 fins, then 90 degree spaces.

This rocket has 3, and then another 3 aligned above them for a total of 6, each spaced out by 120 degrees. I think having 6 in this arrangement is purely aesthetic, as opposed to just having 3. Who knows?

I’ve used this two part epoxy before (resin and hardener) in one or two previous steps with this rocket construction. But this is the first time I’m using it in larger quantities.

rocket with fins attached, lying on workbench and partly suspended in air
back that up

Basically, I used a fin alignment guide (which I found online for free and printed out) to ensure that the fins were aligned properly, spaced exactly 120 degrees apart all the way around. I then prepared some of the epoxy and applied it with a popsicle stick (sophisticated technology), applying it to the edges or “roots” of each fin as if I were buttering a piece of toast. I inserted each fin into its slot, where the fin edge or root with the epoxy is pressed up against the motor mount inside. This is the first of several steps to ensure the fins are securely attached, starting with the interior.

To hold everything in place while this initial round of epoxy cures, I had a couple options. I saw some fancier solutions that other people have done involving using jigsaws and drills to cut out holes in large plywood sheets, and lots of vises and clamps.

That seemed like a lot of work, so I just used some rubber bands and propped the rocket/ fins up against some heavy objects like cans of paint or bricks while it cured (making sure nothing could move, and that the fins were aligned perfectly according to the alignment guide).

For a closer look at the epoxy, I included this photo as well, since it’s critical to this and the next few steps. I used West System epoxy as it was highly recommended, and it works great. The 105 is the epoxy resin, and 205 is the hardener. Each comes with a pump, and you just combine one pump of each into a mixing cup, and mix thoroughly for several minutes. It begins to cure pretty quickly, and the chemical reaction causes it to get extremely hot as it cures (to the point where it will burn you if you touch it, even through the plastic mixing cup, and steam is visibly coming off the top).

mixing epoxy on workbench
mixing two-part epoxy

For most of the fin attachment points, I’m also mixing in some chopped carbon fiber (pictured here as well) which is, in certain places, injected inside with a syringe. The carbon fiber greatly strengthens the epoxy as it cures.

Next, I’ll continue using the epoxy to attach the fins via this injection method, along the inside. After that, a final application of carbon fiber-infused epoxy on the outside of the rocket to create fillets (i.e., just a narrow strip of epoxy along each area where the fin touches the outer rocket body, shaped into a curve to minimize drag).

Things are really coming along – with the fins finally attached, it’s starting to look like a rocket!

How to build a fiberglass rocket, part 8: rail buttons

Before I jump into the riveting details of rail buttons, I’ll take a step back and explain what this is, and why it matters.

Every rocket has a “center of pressure” and a “center of gravity” (or center of mass). I won’t go into detail about these concepts here, but basically, the relationship between these two things is important for a rocket to remain stable in the air. When it’s moving at a fast speed, the fins help keep it going in a straight line (i.e., up) because of the way the air pushes on them. I’m oversimplifying these concepts, but this is the point:

When the rocket is sitting on the launch pad and first lifts off, it is not moving quickly enough to be stable. If you tried launching a rocket from a pad without any kind of support, there would be a pretty good chance that it would not ascend perfectly vertically. It’s entirely possible it would not ascend at all, as it might tip over and fly horizontally (perhaps into a crowd of spectators). This is not ideal for your rocket, or for the spectators.

The solution to this is to provide just enough support for the rocket to keep going vertically as soon as it launches and just begins to (quickly) gain speed. With small model rockets, a thin metal pole is all you need, just a couple of feet high. The rocket will have a small launch lug (basically like a plastic straw) attached to its side, which slides down over the metal pole, ensuring the rocket takes off using the pole as a guide.

For larger rockets, it’s the same concept but with slightly fancier hardware. Instead of a thin pole, the launch pad will have a much bigger rail standing vertically for support. And instead of a plastic straw glued to the rocket, it will have rail buttons, made from plastic and secured by drilling a hole in the rocket body and attaching with metal screws.

metal screws and black plastic rail buttons on workbench
the parts

The concept is extremely simple, and installation is fairly simple as well. It just requires measuring where you want the two rail buttons to be located, marking the spots, and drilling to insert the hardware. In general, you want the rail buttons exactly halfway between two fins, with one very close to the bottom (aft) end of the rocket, and another some distance up the side.

closeup view of rail button attached to red rocket body
the finish

Often one or both is drilled and screwed directly into a centering ring. Whether that’s possible or not on your particular rocket, it also helps to add a small amount of epoxy just to make sure it’s secured in place. Here, you can see where I attached the rail buttons on this fiberglass rocket.

further back view of red rocket body with two rail buttons secured
the alignment

And that’s it! Rail buttons installed, and the rocket can be flown from a standard launch rail.

The next step will require slightly more work: attaching the fins, which are of critical importance in achieving that fashionable “rocket” appearance.

NASA, SpaceX pull off historic launch

SpaceX Crew Dragon vehicle in space
credit: NY Times, NASA/ SpaceX

After a delay of several days due to weather conditions, NASA and SpaceX made history today with a successful launch of the Crew Dragon vehicle atop the Falcon 9 rocket.

The launch took place at 3:23pm eastern time (12:23pm out here on the west coast). The two astronauts aboard the vehicle, Bob Behnken and Doug Hurley, are now well on their 19 hour journey to dock with the International Space Station, where another US astronaut and two Russian cosmonauts await their arrival.

This is a historic mission – the first time the US government is launching a manned rocket from US soil since the final Space Shuttle flight in 2011. It’s part of a new public-private partnership called the Commercial Crew program, a joint effort between NASA and SpaceX.

On top of this, after the Falcon 9 detached from the Dragon vehicle, the rocket had a successful vertical landing back on earth.

What a time to be alive!

What to see at the Museum of Science & Industry in Chicago

When I was visiting family in Chicago for the holidays, I got a chance to check out the Museum of Science and Industry (“MSI”) and in particular, the Henry Crown Space Center. I was born and raised in Chicago and I’ve been to MSI many times when I was younger, but it’s been a few years now. They’ve remodeled and changed exhibits countless times, and I can’t remember having seen the space center before.

Aurora 7 capsule on display from Project Mercury
Aurora 7 capsule (Project Mercury)

Needless to say, it was awesome! There are areas dedicated to each of the major US human spaceflight programs, explaining their purpose. These programs and their stated goals include:

  • Project Mercury (to orbit a manned spacecraft around earth, to investigate humans’ ability to function in space, and to recover both person and spacecraft successfully),
  • Project Gemini (to rendezvous and dock two spacecraft), and
  • Project Apollo (to land men on the moon and return them safely to earth).
Apollo 8 module on display
Apollo 8 module

As pictured here, the exhibit included an actual manned capsule from Mercury and an actual module from Apollo. These were on loan to MSI from the National Air and Space Museum. There’s also a rock on display from the lunar surface. It’s really impressive to see these things in person; mind-blowing when you stop to think about it.

If you want to see more photos, check out my instagram, but I wanted to at least share some highlights from the exhibit on the blog as well. Chicago is renowned for its world-class museums, and MSI doesn’t disappoint.

Apollo lunar landing display
Apollo lunar landing

The space center also had some areas dedicated to modern and future space missions, including info about SpaceX (see picture below), Blue Origin, Virgin Galactic, and other private companies, as well as current NASA projects and plans.

Display model of SpaceX Falcon 9
From the past to the future of spaceflight

I’m enjoying launching model rockets and getting into high power rocketry, but it’s pretty inspiring to see a huge exhibit like this. It gives me motivation to set more rocket-related goals (and crush them) in 2020!