How to build a rocket, or achieve any goal, step 2: Research

As I mentioned in the last post, it is impossible to accurately convey just how little I knew about the whole subject of rockets when I first started thinking about building and launching one. I was completely in the dark, waving my arms around wildly in front of me and unable to see anything. Incidentally, this is my typical research technique.

image credit: pitt honors blog

I initially turned to my good friends Google, Reddit, and Quora. As you might guess, this led me down all sorts of rabbit holes. But this is exactly what you want at this early stage.

I discovered, for example, that there are two large organizations in the US dedicated to amateur rocketry: the National Association of Rocketry (NAR) and Tripoli. Both have been around for decades, and both have hundreds of local clubs spread out across the country – clubs full of other people who share similar interests in rocketry and that periodically host rocket launch events.

I found one local Seattle club, Washington Aerospace Club (WAC), and joined right away. I attended a couple of meetings in person (just before the pandemic hit) and was fascinated that there was a local group of like-minded people who were just really into building and launching rockets. I made some new friends and also found a couple much more experienced people as mentors. More on that below, but finding a mentor is highly recommended.

There’s a lot to learn about building a rocket, whether small or large. There’s also a lot to learn about launching a rocket. Construction techniques, types of rockets, motor sizes and classes, recovery methods, launch pads and towers – the list goes on without end, and that’s without getting into the more sophisticated systems and electronics. I’ve written extensively in previous articles on my blog about many of the basics in rocketry for those who are interested.

But the point is that I needed a crash course, a rockets 101, and I had to do some serious information gathering to even have a bare minimum of competence in setting a goal.

How to do your own research

To take another potential non-rocketry goal at random: let’s say I’ve always wanted to climb Mt. Everest, or some other large and ominous mountain. I know absolutely nothing about this, so where would I start?

I know my end goal in this scenario – scale the mountain and get to the summit, preferably alive. That’s pretty clear, specific, and measurable. But how exactly do I get there, literally or figuratively?

I don’t know enough to even come up with a reasonable plan at this stage. I’d need to do some research, which would start out by brainstorming and asking logical questions: where does a person start (physically) when beginning the climb? Some sort of base camp? Is this something you can do alone, or do people generally hire a professional guide and/or go in a group with others? What kind of clothing and equipment do I need? How long does something like this take – days, weeks, months? Do you have to train ahead of time? What dangers do I need to be aware of? The list of questions goes on.

Or let’s take a less lofty goal, but one that to many people is much more important: passing a big exam you have coming up in the future. Maybe it’s your final exam in a class, or maybe it’s a one-time licensing exam for your career. You know the goal here: get a passing score, or get as high a score as possible. That’s specific and measurable, and almost entirely within your control. But how to do it?

This might not appear as extreme as scaling Mt. Everest, but it can still be pretty stressful and demanding, depending on the subject and the exam, and on what kind of test-taker you are. You wouldn’t be starting out totally in the dark – at the very least, you know that you need to study a lot, and you probably know how to study relatively well.

But even in this scenario, you would benefit from doing some research. We can all stand to improve our study habits, and there are lots of tips and tricks and “hacks” you could use to help. For a really big test, where you will need to devote countless hours to studying, it might be worth looking into ways to boost your studying and use your time more efficiently. Maybe flashcards would help you with memorization, or maybe a buddy will keep you accountable to ensure you’re not slacking.

As mentioned earlier, a mentor can be very helpful as well. It may not be strictly required or worthwhile depending on the particular goal – for example, you probably don’t need a mentor to pass a test, even a very big and difficult one. But if you were planning to scale Mt. Everest, or even run a marathon, a mentor could really come in handy. Receiving the benefits of advice and guidance from someone who has real life experience in your field is absolutely invaluable.

So go ahead – spend a few hours on Google or Wikipedia, get involved in a local organization or club, find a mentor, and do some old fashioned research. And then you’ll be ready for step 3: creating your plan.

How to build a rocket, or achieve any goal, step 1: Set the goal

Is it legal to build and launch your own rocket?

man in green jacket looking up at the sky, with snow covered pine trees in background
me, pretending to daydream

A few years ago, I was daydreaming, and this question occurred to me. I quickly realized I had no idea what the answer was. It also raised dozens of related questions: am I capable of doing this by myself? Do you need some sort of government approval? What are the rules? Are there limits on how big the rocket could be? Could I put something into orbit? What if my rocket blew up, or came crashing down onto someone else? Putting aside any potential comedic value, this could create some big liability for me.

Let me step back for just a moment. I’ve always been interested everything related to space, astronomy, or rockets. As a kid, I read lots of science fiction books on space travel. The Foundation series by Isaac Asimov was (is, still) my favorite book series of all time. Fast forward a few years, and as an adult, I watch with fascination every time that Elon Musk makes an announcement or SpaceX lands one of its rockets vertically, in something that looks like it is straight out of sci-fi. But I’m not actually a rocket scientist. I never considered building a rocket myself. I didn’t even know it was possible to build one, unless you were an enormous government agency like NASA, or a handful of large private corporations – Blue Origin, SpaceX, Rocket Lab, Astra, or other similar large companies. It sounds… complicated.

Now, for the first time, I started thinking about it. Maybe I could build my own rocket. Why not? What the hell?

Of course, I need to stress just how little I knew at the time. To be fair, I should also stress just how little I know even now, but astoundingly, it was even less then. I was totally in the dark. I didn’t know there were local clubs all across the United States where amateurs built and launched small rockets as a hobby. I didn’t know that some people took that hobby to much greater extremes and built relatively sophisticated large high-powered rockets. I didn’t know the rocket body and rocket motor were two completely different things, or what obstacles would be involved in building one. I didn’t know that launching a small low power rocket to 1,000 ft was something that even a child could do, whereas hitting 100,000 ft was a remarkable achievement that generally takes a whole team of very smart and very experienced experts in the field – and very few people (or groups) have ever achieved it.

Suffice it to say, if I listed everything that I didn’t know when I first started, I would never finish writing this article.

But I was curious, and I started looking into it. Setting and fine-tuning the goal was an iterative process. I had to do some basic research and find out more, only to go back and tweak the goal. Putting something into orbit is pretty unrealistic, for a lone individual doing this in their spare time. But building and launching a “high power rocket” (which is defined a certain way, based on the size of its motor) was attainable, at least after some smaller rockets and ample practice.

I ordered a small, low power rocket kit and started putting it together. I realized I really enjoy the process of building, and learning more about different rocket parts and what functions they perform. The longer term goal was to build a high power rocket, but I had to start somewhere as I’d never done this before.

How to set your goal

You are not me, of course, and chances are, you don’t plan to build a rocket yourself. Perhaps you don’t want to blow yourself up, or perhaps you’re just not interested in rockets. No matter. (Hats off to you for reading this anyway on a blog primarily dedicated to rockets.)

What’s important here is coming up with your own goal. This is easier said than done. You know what you’re interested in, or passionate about, and you generally can’t go wrong spending your time doing something enjoyable. But a goal needs to be narrower, more targeted – something where you know when you’ve achieved it, where you can cross it off a list (figuratively or metaphorically) and say yes – I did it. In other words, it needs to be specific and measurable.

It also needs to be largely within your control. True, nothing is ever 100 percent within your control. Life has plenty of external circumstances and obstacles that can be thrown in your path. A global pandemic might occur, for example, or you might be hit with a stray high power rocket (don’t look at me). But you don’t want to choose a goal that is largely outside of your control, as a starting point, no matter what you do. That’s a sure path to frustration and disappointment – and wouldn’t be particularly satisfying even if you happened to achieve it, by chance.

Consider the time period involved as well. There’s no magic number as a minimum or maximum, but you probably don’t need to go through a lot of planning to achieve a relatively simple goal that can easily be done in an hour. At the other extreme, you don’t necessarily want a goal that takes decades and ultimately consumes the rest of your life. In that case, you’d be better off breaking it into several smaller goals, with more reasonable timeframes.

You may not be starting out as hopelessly naive as I did. But once you decide to set a specific goal, you will likely need to go through a similarly iterative process, learning more and then revising the goal accordingly.

How to build a rocket, or achieve any other goal

I’ve been thinking for a while now that I should write something at greater length about how to build a rocket. Not the technical stuff – I’ve written extensively already about epoxy and airframes and electronics – but just the whole journey and mindset. I started with no knowledge or experience and, through a lot of trial and error, I still have no idea what I’m doing – but I could at least share the lessons I’ve learned so far.

smiling man in jeans and green coat standing outside holding a large white and red rocket horizontally
i built this

Perhaps these lessons could be generalized to a lot of other things. Not everyone necessarily wants to build a rocket, or so I’m told. But everyone has their own goals, just as ambitious and often even more so. And everyone has to complete some sort of personal or professional journey in order to get there.

So in the spirit of inclusiveness, here’s what I’ve learned since starting my rocketry journey that can be more broadly applied to any ambitious (or totally mundane) goals in your own life.

1. Set the goal. Figure out exactly what you want to do. This sounds like an obvious starting point, but it’s often easier said than done. You likely already know what you’d like to do, but sometimes you have a general idea and it’s just a little vague. Try to really get specific and measurable. For example, “I’d like to learn more” about some particular topic may be a little fuzzy, whereas “I will complete – and pass – this online course” about that topic is more specifically achievable.

2. Do some research. Find out everything you can about your specific goal and how to make it happen. Google it and poke around on the internet. Ask smarter and more experienced people for advice, and find a mentor. There may be more than one way to achieve your goal; there may also be large obstacles you didn’t foresee. If you’re anything like me, you likely have no idea what you’re getting into – and the more you learn, the more overwhelmed and discouraging it may be. Pro tip: don’t allow yourself to get discouraged too easily. Remember that other people have faced much larger odds and there’s always someone who has done something even more ambitious and/or crazy (of course, they did not always survive the attempt, so plan accordingly).

3. Create a plan. Once you’ve set a narrowly targeted goal and done some basic research related to it, you need a plan. Create a framework where you list every major step needed to achieve the goal. If each step appears daunting, break it into sub-steps so that it’s more manageable. Depending on your original goal and its complexity, you may need to drill down several levels here – maybe some of the smaller steps are still too much, and they need to be broken down further. Keep going, creating something like an outline, and get down to the level where you can complete the first step today – immediately. You may need to do this over several iterations, going back and revising the plan a couple of times to fine-tune it. If it’s too vague, then it’s too hard and won’t get done.

4. Jump in and get started. It’s tempting to just keep revising and tweaking the plan to perfect it. Resist this temptation. While you certainly need to think through your goal, do some research, and come up with a plan, you also cannot continue to plan forever. At a certain point, you need to just jump in and get started – otherwise you will be waiting indefinitely. And there’s a lot to be said for real life experience, and trial and error. Once you start, you’ll run into obstacles you didn’t know about, and perhaps could not have possibly known about, until you moved from the planning phase to the execution phase. You’ll realize certain things were more difficult than you thought, but you’ll also discover entirely new things that you really enjoy, and never would have known about otherwise.

5. Learn from mistakes. Keep plugging away. A slow pace is fine as long as you are making measurable and continuous progress. Remember that when you learn new things, your brain literally changes, forming new physical connections. This is amazing when you think about it. And along those lines, you will not only run into obstacles but you’ll also make some mistakes. Some will be unforced errors that you easily could have avoided. Other mistakes will inevitably happen no matter how well you planned or how much research you did. That’s fine. Don’t get discouraged – as the saying goes, sometimes you win, and sometimes you learn. A mistake or a loss can easily be transformed into a powerful lesson.

Bonus: celebrate completion – and then pivot and reassess. If you follow this plan and have the determination and willpower, you will get there. Don’t worry. And as soon as you achieve that goal, you’re entitled to celebrate and relax. But you may find that after completing this journey, your goal has shifted or evolved. That’s okay too. You are now a different person, with more knowledge and experience than when you first began this journey. As noted previously, your brain has physically rewired itself throughout the learning process. So post-goal completion, you may want to pivot to set a brand new goal, or to build on your previous success. Go for it: you have wisdom now, and you know you can do difficult things.

I’ll expand on each of these in some future posts.

2020: A Rocketry Year in Review

The rearview mirror

A little over one year ago, I came across a question on Quora (an internet forum) about whether it would be legal to build and launch your own rocket into orbit.

Rearview mirror in a car with road and mountains
Looking through the rearview mirror

I’d always been interested in rockets and space, but I never seriously considered doing this or even realized it was possible, or legal. How realistic is this kind of project? Do you need anyone’s permission, i.e. the FAA? The US government?

One month and an uncountably high number of Google searches later, I was actively exploring the possibilities.

Near the end of 2019 (before we had any idea what kind of year 2020 would be), I set a few rocketry-related goals for myself. I was just realizing that anyone can build and launch real, working model rockets. And they could build and launch big ones, too – high power rockets. I decided to try it out, first building a few smaller low power rockets and sending them up with a small launch pad, and then building my first high power rocket. Somewhat unexpectedly, one of the bigger obstacles I ran into wasn’t the construction of the rockets, but finding a suitable launch site. But I found a few places and had some initial successes. I set some concrete goals going into the new year.

My 2020 goals included the following:

  • build and successfully launch my first high power rocket;
  • get my NAR HPR level 1 certification (H or I motor);
  • get my level 2 certification (J, K, or L motor);
  • build my first electronics bay, learn more about flight computers, and use dual deploy for parachutes;
  • get my amateur (“ham”) radio license;
  • renovate my backyard garden shed and build a practical workshop, primarily for rocket projects;
  • get my level 3 certification (M, N, or O motor); and
  • build a two-stage rocket.

Overall, things went pretty well. I didn’t achieve everything on the list, but I did accomplish many of these things and got some high power rocketry experience under my belt – basically everything except the L3 cert and the two stage rocket. And I did actually build my L3 rocket (three separate times!) but had two flight certification attempts that were not successful, so I came close but didn’t quite pull it off. In general, I did a lot of stuff I’d never done before, and learned a tremendous amount along the way.

In short, I had a blast!

The future plans

Turning to 2021, it’s a new year and time to set some new goals. The logical starting point is with the goals I didn’t quite get to finish in 2020. Was I too ambitious? Crazy? Did I just run out of time? Who knows?

Since I already rebuilt my L3 rocket for the third time and it’s ready to fly, my first goal is getting my L3 certification. This will let me fly M, N, and O motors (and there are some even bigger ones beyond that, but first things first). There are no additional certification levels, though, after L3.

Next, I intend to build a two stage rocket. It can be fairly simple and inexpensive – no need to start off with something overly complex right off the bat – but I want to get a solid understanding of staging, and specifically staging using electronics (multiple flight computers). There are a couple important “events” with a two stage rocket, but basically the first stage (booster) ignites on the ground and “boosts” it high into the air, and then the second stage (sustainer) ignites mid-air. The first stage also breaks off and falls back to the ground at this point, reducing total weight and drag so the sustainer can fly much higher on its own. I’ll have much more to say about this two stage project once I dive in.

After that, I’d like to start on a more ambitious two stage project – something made of fiberglass, minimum diameter, and more sophisticated. Ideally I might be able to build a two stage rocket using one M and one N motor that can hit 100,000 ft, but more likely it would be a high altitude rocket that goes a few tens of thousands of feet into the air. I’ll see what’s realistic as I get closer to this goal.

In the meantime, I’m also taking some more math and science classes in 2021. Right now I’m enrolled in a chemistry course as well as a geology course dedicated to dinosaurs. The latter is entirely just for fun and has nothing to do with rocketry, but it isn’t extremely time consuming or demanding either. Chemistry is much more intense, but it’s also much more critical to rocketry, especially if I want to eventually build my own solid fuel motors or get into liquid fuel or something down the road.

Here’s to 2021!

Revisiting my 2020 rocketry goals

This has been quite a year. I don’t mean for the world – yes, Australia was on fire, a global pandemic struck and is still ravaging the US, the economy is in free fall, there’s no end in sight, etc. That’s all true. But I mean for me personally. I set some goals back in January for 2020 and I’m crushing them. Like this:

black and white photo of sledgehammer breaking glass
to be fair, it is not that difficult to break through glass

I intended to write this post at the beginning of July, exactly halfway through the year, but things have been busy and time got away from me. I think it’s good to set goals at the beginning of a new year, but it’s just as important to pause a few times to seriously assess progress – or obstacles to progress – and sometimes, to revisit the goals when things change dramatically.

Clearly, a lot changed during this past year. Whatever your goals were at the outset of 2020, the world looked very different on January 1 from how it looks today, in August. Some goals have become literally impossible to achieve, due to external circumstances. Others are still achievable but have become significantly more difficult.

I wrote a post assessing my progress toward my own previously published goals for the year after the first quarter ended, in early April. In short, due to a scarcity of launch opportunities in the winter, and then the COVID-19 pandemic, I wasn’t able to launch anything or get any certifications in high power rocketry (“HPR”). But on the plus side, I transformed my backyard shed into a practical workshop (for rocketry), got a ham radio license so I could use a flight computer in a rocket with telemetry, and did some other cool stuff.

More recently, during the second quarter of the year, I did finally get the chance to fly a few rockets, which was amazing. I got my level 1 and also level 2 certifications in HPR, scoring some nifty badges and checking some major goals off my list. I also got a few additional post-L2 flights for more dual deploy experience.

My original goals for 2020 had also included getting my level 3 certification in HPR, the highest level offered by the National Association of Rocketry (“NAR”). In retrospect, this was pretty ambitious, even in a normal year. I had never launched even a small model rocket before last fall, and in less than a year I was planning to jump (plunge?) into high power stuff, getting multiple certifications.

And L3 in particular is significantly more difficult. True, it’s ultimately just building a larger rocket capable of flying on a more powerful motor (specifically an M, N, or O class motor). But it’s also a much more elaborate process.

NAR has a national L3 Certification Committee; generally two individuals per state are on this committee. You have to contact them and get one to serve as your advisor, and you need to find a second L3 individual as an advisor as well. You have to submit an L3 certification package and application, describing the rocket you intend to build in detail. As you build it, you have to thoroughly document everything you’re doing with plenty of photos and descriptions. Your advisors can question you and can perform on-site inspections of the rocket at any point in time. The rocket itself has to meet certain requirements, such as having fully redundant recovery systems. And of course, once it’s complete, you have to fly it with your advisors present as witnesses, including a successful recovery of the rocket.

That being said, it’s only August, and 2020 is not done yet. Rather, I should say that I’m not done with 2020 yet. I still have goals to achieve, and one of them is my L3 certification. The odds are against me, but I have a plan, and it might yet be possible to do this before the year is up.

Stay tuned for some exciting updates!

High Power Rocketry: L2 Certification Flight

Officially level 2 certified!

rocket launching into the blue sky, with fire and smoke below
textbook flight

Fulfilling a 2020 goal

I really started getting into rocketry last fall, less than a year ago, and I had set some goals for 2020 when the year began. My goals included getting level 1 and level 2 certifications in high power rocketry (HPR) through the National Association of Rocketry (NAR).

I think 2020 threw some curveballs at just about everybody, myself included – but after a few false starts and delays, I was able to launch my first high power rocket in central Washington on a beautiful day in June, and as I wrote about previously, I got my L1 cert.

I deliberately chose and constructed a rocket that could be used for both L1 and L2 certification (i.e. it is capable of launching on a more powerful motor), and I built it to be dual deploy capable. I also had plenty of time to study for the written exam, which is required after the L1 certification but prior to the L2 flight. Timing is everything.

Because of this, I was able to do everything in a single day – L1 flight, L2 written exam (which I passed, of course), and L2 flight. I had more than six months to prepare for this day, so it’s not particularly impressive!

white rocket with orange and yellow parachutes lying on ground in green field
a safe landing

L1 vs. L2 flights

On the L1 flight – the maiden voyage – I didn’t want to take any unnecessary risks and decided to keep it as simple as possible, so I didn’t attempt using any electronics or dual deploy. The rocket separated through a simple motor ejection charge.

But for the L2 flight, I wanted to try the flight computer and dual deploy. I was a little nervous because while I checked and rechecked everything in advance, this was still the first actual attempt and there were a lot of firsts: first time using any flight computer or black powder charges, first time arming the electronics on the launch pad, first time using the ground station to communicate via radio with the rocket (using a laptop with the appropriate software and a connected Yagi antenna), etc.

Everything went smoothly, from the launch (see first photo above) to deployment of the drogue parachute at apogee and the main parachute closer to the ground. I recovered the rocket without any damage.

white rocket with text "improbable ventures" lying on ground in green field
mildly improbable

L2 flight data breakdown

What’s particularly cool is the flight computer not only fires multiple pyro charges (and therefore controls the rocket’s separation and deployment of two parachutes), but it also contains an altimeter and other sensors that record the rocket’s maximum height and its descent speed.

For my L2 flight, the rocket reached 3,506 ft, with a maximum speed of 599 ft/sec (Mach 0.5). In other words, the rocket’s max speed was about one-half the speed of sound.

The descent rate under the drogue parachute was 39 ft/sec, and under the main parachute it was 27 ft/sec. The HyperLOC 835 is a fairly lightweight cardboard rocket with a gross liftoff weight (that is, a weight including the motor, parachutes, and everything else inside) of only about 6 lbs, and this descent rate was more than sufficient for a safe landing.

All in all, this was a fantastic experience. A four hour drive each way made this a very long day, but it was absolutely worth making the trip. Inevitably, I also learned a tremendous amount – for example, how to set up a large rocket on the pad and launch rail, how to use the flight computer and ground station software, etc. I also learned what types of things that I could do better next time. Overall, I’m even more excited about future launches – trying out new techniques, flying on even more powerful motors, and capturing data with the flight computer to beat my own previous records!

High Power Rocketry: L1 Certification Flight

Finally! According to the National Association of Rocketry, I now officially have my level 1 certification in high power rocketry.

rocket launching into the air with fire and smoke below
liftoff!

I finished building my first high power rocket, the HyperLOC 835, back in December, but getting certified requires a successful flight and recovery of the rocket. But clubs don’t often host launch events in the winter months, and those that do are still subject to weather conditions (e.g., snowstorms). It’s helpful to have a club host a launch because you need (a) access to a large suitable area of land, (b) a waiver from the FAA to launch up to a certain altitude, and (c) launch equipment, such as launch pads and rails and an electric ignition system.

Clubs often start hosting launch events in the spring, but in spring 2020, COVID-19 hit, and things were cancelled or postponed.

I was finally able to attend a launch in June in south central Washington, about a 4 hour drive from where I live in the Seattle area.

I ended up launching the HyperLOC 835 on an Aerotech I-140 motor. The rocket is capable of dual deploy using a flight computer, but for this L1 certification flight I wanted it to be as simple as possible, so I didn’t use electronics. The recovery system was a parachute that deployed when the rocket separated using the motor ejection charge.

white and red rocket on launch pad
maiden flight

The weather looked ominous: it was cloudy, and we felt a few raindrops hitting us periodically, but it seemed to be holding steady.

The rocket launched, the parachute deployed, and it landed without a scratch in the tall grasses. The only tricky part was locating it. But since I was able to see the general area where it landed, it wasn’t too difficult to find.

yellow parachute in a sea of green tall grasses
a sea of tall grasses

Luckily the bright yellow parachute was pretty easy to spot from a distance, even though the rocket had sunk into a sea of tall grasses.

white rocket with text "improbable ventures" lying in tall grasses
a venture most improbable

Overall, it was a textbook launch and went as smoothly as could be expected! I’d estimate the rocket went about 1,700 ft in altitude, but as mentioned above, I didn’t use electronics for this flight so I can’t say for sure.

Immediately after this, I took the level 2 written exam, which is required prior to the level 2 certification flight, and I passed that (not difficult considering I’d had six months to study). It started raining more heavily, though, and we weren’t sure if we would need to call it a day and head out. But we waited another 30 minutes for the rain to stop, and then the skies cleared up and the sun came out. Perfect timing for my L2 certification flight, which I’ll summarize in my next post!

Next rocket: Darkstar Extreme

Winter is not a popular time for high power rocket launches. Few clubs actually hold major launch events in the winter months – and the rare brave souls who do are nevertheless subject to the weather. I did find a local club (about a 4 hour drive from Seattle) that has a standing FAA waiver to launch one day each month, but the weather hasn’t been cooperating and so it was cancelled in December, January, February, and March.

Fortunately, spring is here, and clubs start holding many more launches in the coming months, as the weather steadily improves. Unfortunately… COVID-19 hit, and everything is cancelled until further notice. So April is out, and probably May as well. Everyone is at home, with shelter in place and lockdown orders in effect.

On the bright side, it’s a great time to start construction on my next rocket. My most recent project, the HyperLOC 835, has a 4″ diameter body, with a 54mm motor mount. The body is made from (very durable) cardboard and the nosecone is plastic. It’s a great rocket and I’m looking forward to launching it on several different motors, and with a flight computer and electronics bay capable of dual deployment.

My next rocket, though, will be the Wildman Rocketry “Darkstar Extreme.” It also has a 4″ rocket body, but with a 75mm motor mount that can fit more powerful motors, potentially up to an M. (As an aside, an N or O motor only comes in the 98mm variety and would require an even larger diameter motor mount.) The rocket body is made from fiberglass, and the nosecone is fiberglass as well with an aluminum tip.

rocksim design file of the darkstar extreme rocket
the darkstar extreme, in sexy and exciting two-dimensional glory

Above is the design file for the Darkstar Extreme, from Rocksim, a rocket design and simulation program.

And here’s the description from the manufacturer, Wildman Rocketry:

“TAKING IT TO THE MAX
Leave it to Wildman to push the Darkstar to the Max with this radical upgrade. No Mildmen allowed!
This beast is ready to rock on any motor you can stuff in it!”

Can’t go wrong with that. Time to take full advantage of the quarantine.