Rocket flight data

Just to follow up on my last post, I wanted to provide some additional information and the actual flight data, and briefly explain what this all means, especially for all those folks reading this who are not familiar with anything related to rockets or flight computers. And for anyone who has significant experience flying rockets, you may find the below information interesting as well, without any explanation!

As a starting point: a flight computer is basically a very small circuit board that you put inside your rocket, and it has a bunch of neat built-in gadgets to measure exactly how high the rocket went, and how fast, and what interesting events happened when. I’ll explain more below.

This is the relevant flight data for the flight I mentioned in my last post, which went over one mile high:

flight data
flight data

So what does all of this mean?

First of all, it means that the rocket flew to a maximum height of about 7,579 ft – you can see this in “maximum height.” This measurement is made by a barometer taking air pressure readings in the flight computer, starting at ground level on the launch pad, and then many times while it’s in flight. There’s also a GPS chip on this flight computer and you can see it also independently measures the height using GPS, but I’m just going to assume the lower value is more likely correct.

The flight computer also records the maximum speed, which in this case was 904 feet per second (fps), which is equivalent to Mach 0.8, or a little bit slower than the speed of sound.

The total flight time was 145 seconds (just over two minutes), and there’s a further breakdown of how long the rocket spent going up and then coming back down.

The graph is even more intuitive:

graph of flight data
flight data graph

This reflects the same data described above. The black line is the easiest to understand: it represents the rocket’s actual height over time. As is generally the case (unless you experience a catastrophic failure), the rocket zooms off the launch pad extremely rapidly and hits a maximum height early (here, just over 7,500 ft, as you can see from the black units to the left side), and then after parachutes deploy, it descends more slowly.

The red line is speed (extremely high at first and then plummets quickly), and the orange or gold line is acceleration. Both of these units are off to the right side of the graph.

It’s definitely fun to build and fly a rocket, but with modern flight computers and the ability to record all kinds of really precise data, you can really geek out on this stuff. How high can I fly? How fast can my rocket go? Is it descending at the right speed, or do I need a bigger (or smaller) parachute next time? This can really help refine your building and flying skills through a trial and error process, because you have access to reliable data. And needless to say, this can also help you find your rocket if you lose it because it lands really far away out of sight. In that situation, you’ll find the GPS coordinates onboard to be incredibly useful!

One thought on “Rocket flight data

  1. Very cool. What is your flight computer? Can you expandeca bit on the various components you’d selected for it? Do you also have real-time telemetry capability? These are things I’m researching for my future builds.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s